Log in

Influence of conduction-band non-parabolicity on terahertz intersubband Raman gain in GaAs/InGaAs step asymmetric quantum wells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The conduction electron states in step-like strained GaAs/InGaAs quantum wells are theoretically investigated under the effective mass approximation, taking into account the effects of band non-parabolicity. With such information, the intersubband three-level Raman gain is calculated looking to reveal a possible application of the studied systems as sources for THz Raman lasing. A group of high-gain intersubband transitions is identified, and the results are strongly dependent on a suitable geometric design in terms of potential well widths which can lead to values of the Raman gain between 200 and \(400\,\hbox {cm}^{-1}\), the latter values being close to those previously reported in GaAs-based double asymmetric quantum wells. Secondary radiation frequencies are identified within the range of few tens of THz. It is found that the influence of band non-parabolicity causes a significant reduction of the Raman gain, in comparison with the values obtained neglecting such a phenomenon. Therefore, conduction-band non-parabolicity becomes a crucial element for the accurate quantitative description of the intersubband-related optical response in low-dimensional heterostructures involving small gap materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Rosencher, P. Bois, J. Nagle, S. Delaitre, Second harmonic generation by intersubband transitions in compositionally asymmetrical MQWs. Electron. Lett. 25, 1063–1065 (1989)

    Google Scholar 

  2. E. Rosencher, P. Bois, Model system for optical nonlinearities: asymmetric quantum wells. Phys. Rev. B 44, 11315–11327 (1991)

    ADS  Google Scholar 

  3. H.C. Liu, J. Li, E. Costard, E. Rosencher, J. Nagle, Sum frequency generation by intersubband transition in step quantum wells. Solid State Electron. 40, 567–570 (1996)

    ADS  Google Scholar 

  4. A. D’Andrea, N. Tomassini, L. Ferrari, M. Righini, S. Selci, M.R. Bruni, D. Schiumarini, M.G. Simeone, Optical properties of stepped \(\text{ In }_x\text{ Ga }_{1-x}\text{ As }/\text{ GaAs }\) quantum wells. Microelectron. Eng. 43–44, 259–263 (1998)

    Google Scholar 

  5. X. Chen, On the role of local-field effect on optical intersubband saturation and intrinsic bistability in a step quantum well. Sol. State Commun. 104, 125–130 (1997)

    ADS  Google Scholar 

  6. T.W. Kim, Enhancement of the intersubband Stark effectin strained \(\text{ In }_{x}\text{ Ga }_{1-x}\text{ As/In }_{y}\text{ Al }_{1-y}\text{ As }\) asymmetric step quantum wells. Appl. Surf. Sci. 125, 213–216 (1998)

    ADS  Google Scholar 

  7. W. Wu, Tunable mid-infrared photodetectors employing Stark shifts of intersubband transitions in \(\text{ In }_{0.05}\text{ Ga }_{0.95}/\text{ Al }_{0.32}\text{ Ga }_{0.68}\text{ As }/\text{ Al }_{0.45}\text{ Ga }_{0.55}\text{ As }\) asymmetric step quantum wells. Superlatt. Microstruct. 35, 25–34 (2004)

    ADS  Google Scholar 

  8. M.G. Barseghyan, A.A. Kirakosyan, Electronic states in a step quantum well in a magnetic field. Physica E 28, 471–481 (2005)

    ADS  Google Scholar 

  9. L.A. Ferrer-Moreno, R. Betancourt-Riera, R. Betancourt-Riera, R. Riera, Electron Raman scattering in semiconductor step-quantum well. Phys. B 477, 87–93 (2015)

    ADS  Google Scholar 

  10. R. Betancourt-Riera, R. Betancourt-Riera, L.A. Ferrer-Moreno, J.M. Nieto-Jalil, Electron states and electron Raman scattering in semiconductor step-quantum well: electric field effect. Superlatt. Microstruct. 104, 428–437 (2017)

    ADS  Google Scholar 

  11. H. Dakhlaoui, Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field. Optik 168, 416–423 (2018)

    ADS  Google Scholar 

  12. A. Samyh, W. Salhi, A. Rajira, H. Akabli, A. Abounadi, A. Almaggoussi, Double two-photon absorption in an asymmetric stepped quantum well in the terahertz range. Superlatt. Microstruct. 130, 560–568 (2019)

    ADS  Google Scholar 

  13. S. Offsey, W.J. Schaff, L.F. Lester, L.F. Eastman, S.K. McKernan, Strained-layer InGaAs–GaAs–AlGaAs lasers grown by molecular beam epitaxy for high-speed modulation. IEEE J. Quant. Electron. 37, 1455–1462 (1961)

    Google Scholar 

  14. I. Nevinskas, R. Butkuté, S. Stanionytė, A. Bičiūnas, A. Geižutis, A. Krotkus, THz pulse emission from InAs-based epitaxial structures grown on InP substrates. Semicond. Sci. Technol. 31, 115021 (2016)

    ADS  Google Scholar 

  15. M.A. Kozub, M. Motyka, M. Dyksik, G. SȩK, J. Misiewicz, K. Nishisaka, T. Maemoto, S. Sasa, Non-destructive carrier concentration determination in InAs thin films for THz radiation generating devices suing fast differential reflectance spectroscopy. Opt. Quant. Electron. 48, 384 (2016)

    Google Scholar 

  16. Z. Qiao, X. Li, H. Wang, T. Li, X. Gao, Y. Qu, B. Bo, C. Liu, High-performance 1.06\(\mu \)m InGaAs/GaAs double quantum well semiconductor laser with asymmetric heterostructure layers. Semicond. Sci. Technol. 34, 055013 (2019)

    ADS  Google Scholar 

  17. M.A. Billaha, M.K. Das, Peformance analysis of AlGaAs/GaAs/InGaAs-based asymmetric long-wavelength QWIP. Appl. Phys. A 125, 457 (2019)

    ADS  Google Scholar 

  18. G. Sun, J.B. Khurgin, L. Friedman, R.A. Soref, Tunable intersubband Raman laser in GaAs/AlGaAs multiple quantum wells. J. Opt. Soc. Am. B 15, 648–651 (1998)

    ADS  Google Scholar 

  19. G. Sun, J.B. Khurgin, R.A. Soref, Design of a GaN/AlGaN intersubband Raman laser electrically tunable over the \(3\,-\,5\;\mu \)m atmospheric transmission window. J. Appl. Phys. 99, 033103 (6 pages) (2006)

  20. C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989)

    ADS  Google Scholar 

  21. J. Minch, S.H. Park, T. Keating, S.L. Chuang, Theory and experiment of \(\text{ In }_{1-x}\text{ Ga }_x\text{ As }_y\text{ P }_{1-y}\) and \(\text{ In }_{1-x-y}\text{ Ga }_x/\text{ Al }_y\text{ As }\) long-wavelength strained quantum-well lasers IEEE. J. Quant. Electron. 35, 771 (1999)

    ADS  Google Scholar 

  22. J. Shao, A. Dörnen, R. Winterhoff, F. Scholz, Ordering parameter and band-offset determination for ordered \(\text{ Ga }_x\text{ In }_{1-x}\text{ P }/(\text{ Al }_{0.66}\text{ Ga }_{0.34})\text{ In }_{1-y}\text{ P }\) quantum wells. Phys. Rev. B 66, 035109 (2002)

    ADS  Google Scholar 

  23. K. Köksal, M. Şahin, The effect of dilute nitrogen on nonlinear optical properties of the InGaAsN/GaAs single quantum wells. Eur. Phys. J. B 85, 333 (2012)

    ADS  Google Scholar 

  24. A. Tiutiunnyk, C.A. Duque, M.E. Mora-Ramos, Intersubband Raman gain in strained zincblende III-nitride-based step asymmetric quantum wells: non-parabolicity effects. Opt. Quant. Electron. 50, 234 (2018)

    Google Scholar 

  25. P.A. Khomyakov, M. Luisier, A. Schenk, Compositional bowing of band energies and their deformation potentials in strained InGaAs ternary alloys: a first-principles study. Appl. Phys. Lett. 107, 062104 (2015)

    ADS  Google Scholar 

  26. E.O. Kane, Band structure of Indium Antimonide. J. Phys. Chem. Solids 1, 249–261 (1957)

    ADS  Google Scholar 

  27. Q.H.F. Vrehen, Interband magneto-optical absorption in Gallium Arsenide. J. Phys. Chem. Solids 29, 129–141 (1968)

    ADS  Google Scholar 

  28. V.G. Golubev, V.I. Ivanov-Omskii, I.G. Minervin, A.V. Osutin, D.G. Polyakov, Nonparabolicity and anisotropy of the electron energy spectrum in GaAs. Sov. Phys. JETP 61, 1214–1219 (1985)

    Google Scholar 

  29. S. Chaudhuri, K.K. Bajaj, Effect of nonparabolicity on the energy levels of hydrogenic donors in \(\text{ GaAs-Ga }_{1-x}\text{ Al }_x\text{ As }\) quantum-well structures. Phys. Rev. B 29, 1803–1806 (1984)

    ADS  Google Scholar 

  30. F. Malcher, G. Lommer, U. Rössler, Electron states in \(\text{ GaAs }/\text{ Ga }_{1-x}\text{ Al }_x\text{ As }\) heterostructures: nonparabolicity and spin-splitting. Superlatt. Microstruct. 2, 267–272 (1986)

    ADS  Google Scholar 

  31. D.F. Nelson, R.C. Miller, D.A. Kleinman, Band nonparabolicity effects in semiconductor quantum wells. Phys. Rev. B 14, 7770–7773 (1987)

    ADS  Google Scholar 

  32. U. Eckenberg, Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels. Phys. Rev. B 40, 7714–7726 (1989)

    ADS  Google Scholar 

  33. B.R. Nag, S. Mukhopadhyay, Energy levels in quantum wells of nonparabolic semiconductors. Phys. Stat. Sol. B 175, 103–112 (1993)

    ADS  Google Scholar 

  34. C. Sirtori, F. Capasso, J. Faist, S. Scandolo, Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells. Phys. Rev. B 50, 8663 (1994)

    ADS  Google Scholar 

  35. C. Wetzel, R. Winkler, M. Drechsler, B.K. Meyer, U. Rössler, J. Scriba, J.P. Kotthaus, V. Härle, F. Scholz, Electron effective mass and nonparabolicity in \(\text{ Ga }_{0.47}\text{ In }_{0.53}\text{ As }/\text{ InP }\) quantum wells. Phys. Rev. B 53, 1038–1041 (1996)

    ADS  Google Scholar 

  36. Y. Li, O. Voskoboynikov, C.P. Lee, S.M. Sze, Energy and coordinate dependent effective mass and confined electron states in quantum dots. Sol. State. Commun. 120, 79–83 (2001)

    ADS  Google Scholar 

  37. K.Q. Le, Finite element analsysis of quantum states in layered quantum semiocnductor structures with band nonparabolicity effect. Microw. Opt. Technol. Lett. 51, 1–5 (2009)

    Google Scholar 

  38. S. Panda, B.K. Panda, Effect of conduction band nonparabolicity on the optical properties in a single quantum well under hydrostatic pressure and electric field. Pramana-J. Phys. 78, 827–833 (2012)

    ADS  Google Scholar 

  39. N. Kotera, Energy dependence of electron effective mass and effect of wave function confinement in a nanoscale \(\text{ In }_{0.53}\text{ Ga }_{0.47}\text{ As }/\text{ In }_{0.52}\text{ Al }_{0.48}\text{ As }\) quantum well. J. Appl. Phys. 113, 234314 (2013)

    ADS  Google Scholar 

  40. N. Voković, V. Milanović, J. Radovanović, Influence of nonparabolicity on electronic structure of quantum cascade laser. Phys. Lett. A 378, 2222 (2014)

    ADS  Google Scholar 

  41. A. Persson, R.M. Cohen, Reformulated Hamiltonian for nonparabolic bands in semiconductor quantum wells. Phys. Rev. B 38, 5568–5575 (1988)

    ADS  Google Scholar 

  42. S. Tsu**o, Optical gain of two-dimensional hole gas by intersubband Raman transitions. J. Appl. Phys. 112, 023508 (2012)

    ADS  Google Scholar 

  43. A. Tiutiunnyk, M.E. Mora-Ramos, C.M. Duque, R.L. Restrepo, F. Ungan, J.C. Martínez-Orozco, E. Kasapoglu, C.A. Duque, Electron Raman scattering in a double quantum well tunes by an external nonresonant intense laser field. Opt. Mat. 64, 496–501 (2017)

    Google Scholar 

  44. Y. Shen, The Principles on Nonlinear Optics (Wiley, New York, 1984), pp. 143–151

    Google Scholar 

  45. S.M. Maung, S. Katayama, Theory of intersubband Raman laser in modulation-doped asymmetric coupled double quantum wells. J. Phys. Soc. Jpn. 73, 2562–2570 (2004)

    ADS  Google Scholar 

  46. S.M. Maung, S. Katayama, Gain of intersubband Raman lasing in modulation-doped asymmetric coupled double quantum wells. Physica E 21, 774–778 (2004)

    ADS  Google Scholar 

  47. R. Betancourt-Riera, R. Rosas, I. Marín-Enriquez, R. Riera, J.L. Marín, Electron Raman scattering in asymmetrical multiple quantum wells. J. Phys. Condens. Mater. 17, 4451–4461 (2005)

    ADS  Google Scholar 

  48. M. Miura, S. Katayama, Electric-field effects on intersubband Raman laser gain in modulation-doped GaAs/AlGaAs coupled double quantum wells. Sci. Technol. Adv. Mat. 7, 286–289 (2006)

    Google Scholar 

  49. R. Betancourt-Riera, R. Betancourt-Riera, L.A. Ferrer-Moreno, A.D. Sañu-Ginarte, Electron states and electron Raman scattering in a semiconductor quantum well with step-barriers: electric field effect. Phys. B 575, 411700 (2019)

    Google Scholar 

  50. N.N. Moorthy, A. John Peter, C.W. Lee, Raman gain in a Boron based Group-III nitride quantum well. Superlatt. Microstruct. 70, 13–23 (2014)

    ADS  Google Scholar 

  51. N.N. Moorthy, A. John Peter, Intraband Raman laser gain in a boron nitride coupled quantum well. AIP Conf. Proc. 1731, 120009 (2016)

    Google Scholar 

Download references

Acknowledgements

AT acknowledges the financial support from Postdoctoral Fellowship FONDECYT 3180276. DL acknowledges partial financial support from Centers of excellence with BASAL/CONICYT financing, Grant FB0807, CEDENNA and FONDECYT 1180905. CAD acknowledges the financial support from El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (project 80740-173-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Mora-Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiutiunnyk, A., Pérez-Quintana, I., Laroze, D. et al. Influence of conduction-band non-parabolicity on terahertz intersubband Raman gain in GaAs/InGaAs step asymmetric quantum wells. Appl. Phys. A 126, 23 (2020). https://doi.org/10.1007/s00339-019-3214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3214-4

Navigation