Log in

Structural, electric and dielectric properties of Ca0.85Er0.1Ti1−xCo4x/3O3(0 ≤ x ≤ 0.1)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural and physical properties of Ca0.85Er0.1Ti1−xCo4x/3O3 (CETCox) (x = 0.00, 0.05 and 0.10), synthesized by sol–gel method were studied. The polycrystalline sample of CETCox was investigated by X-ray diffraction and morphological properties by scanning electron microscopy (SEM) as well as the electrical characterizations. A single orthorhombic perovskite structure with a Pbnm space group was obtained. The electrical properties were studied by impedance complex spectroscopy in the frequency range (102–107 Hz) at different temperatures. The electrical properties showed that all samples have a semiconductor behavior. Conductivity decreased with increasing Co rate. At a specific temperature, a saturation region was marked in the conductivity curve as a function of temperature. From the curve of the average normalized change with temperature dependence, we deduced the temperature in which the density of trapped charge is vanished, confirming the saturation which appears at the temperature dependence of conductivity. The complex impedance analysis confirmed the existence of electrical relaxation in the materials, which may be responsible for the electrical conduction. CETCox presented a decrease of the real and imaginary part of permittivity and dielectric loss with increasing frequency. This can be explained by Maxwell–Wagner type of polarization in accordance with Koop’s theory and can also explain the increase of conductivity with frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. L. Naumov, H. Bellaiche, Fu, Nature 432, 737–740 (2004)

    ADS  Google Scholar 

  2. C. Bharti, S.N. Choudhary, T.P. Sinha, J. Surf. Sci. Technol 24, 457–460 (2008)

    Google Scholar 

  3. A. Rivera, N. Kumar, R.S. Ortega, S. Katiyar, Lushnikov, Solid State Commun. 149, 172–176 (2009)

    ADS  Google Scholar 

  4. X. Zhu, Z. Liu, N. Ming, J. Mater. Chem. 20, 4015–4030 (2010)

    Google Scholar 

  5. V.S. Kolat, H. Gencer, M. Gunes, S. Atalay, Mater. Sci. Eng. B 140, 212–217 (2007)

    Google Scholar 

  6. N. Khare, D.P. Singh, H.K. Gupta, P.K. Siwach, O.N. Srivastava, J. Phys. Chem. Solids 65, 867–870 (2004)

    ADS  Google Scholar 

  7. J.C. Debnath, R. Zeng, J.H. Kim, S.X. Dou, J. Alloys Compd. 509, 3699–3704 (2011)

    Google Scholar 

  8. A. Dhahri, F.I.H. Rhouma, S. Mnefgui, J. Dhahri, E.K. Hlil, J. Ceram. Int. 40, 459–464 (2014)

    Google Scholar 

  9. J.H. Kim, W.S. Jung, H.T. Kim, D.H. Yoon, Ceram. Int. 35, 2337–2342 (2009)

    Google Scholar 

  10. H. Shen, Y. Song, H. Gu, P. Wang, Y. **, Mater. Lett. 56, 802–805 (2002)

    Google Scholar 

  11. S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Comp. Mater. Sci 29, 165–168 (2004)

    Google Scholar 

  12. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997–2007 (2000)

    Google Scholar 

  13. E. Brzozowski, M.S. Castro, J. Eur. Ceram. Soc. 24, 2499–2507 (2004)

    Google Scholar 

  14. X. Zhou, O.T. Sørensen, Q. Cao, Y. Xu, Sens. Actuators B 65, 52–54 (2000)

    Google Scholar 

  15. S.Y. Chu, C.H. Chen, Sens. Actuators A Phys. 89, 210–214 (2001)

    Google Scholar 

  16. V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, R. Kunze, Solid State Commun. 110, 611–614 (1999)

    ADS  Google Scholar 

  17. Y.J. Wong, J. Hassan, M. Hashim, J. Alloys Compd. 571, 138–144 (2013)

    Google Scholar 

  18. H.S. Tewari, O. Parkash, V.B. Tare, D. Kumar, J. Mater. Sci 25, 2181–2184 (1990)

    ADS  Google Scholar 

  19. Ch Durga, H.S. Prasad, Devendra Tewari, Om Kumar, Parkash, Bull. Mater. Sci. 11, 307–313 (1988)

    Google Scholar 

  20. D. Li, M.A. Subramanian, Solid State Sci. 2, 507–512 (2000)

    ADS  Google Scholar 

  21. V. Vashook, L. Vasylechko, H. Ulmann, U. Guth, Solid State Ionics 158, 317–325 (2003)

    Google Scholar 

  22. A.B. Hassen, F.I.H. Rhouma, J. Dhahri, N. Abdelmoula, J. Alloys Compd. 663, 436–443 (2016)

    Google Scholar 

  23. A. Hassini, Monique Gervais, Jérome Coulon, Vinh Ta Phuoc, François Gervais. Mater. Sci. Eng. B 87, 164–168 (2001)

    Google Scholar 

  24. V.M. Goldschmidt, Geochemistry (Oxford University Press, London, 1958), pp. XIe730

    Google Scholar 

  25. X-Ray Taylor, Metallography (Wiley, New York, 1961)

    Google Scholar 

  26. G.K. Wiliamson, W.H. Hall, Acta Meatall. 1, 22–31 (1953)

    Google Scholar 

  27. A.K. Jonscher, Universal relaxation law. (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  28. S. Abdul-Jawad, A. Alnajjar, M.H. Abdallah, Appl. Phys. A 64, 199–201 (1997)

    ADS  Google Scholar 

  29. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, J. Dalton Trans. 44, 10457–10466 (2015)

    Google Scholar 

  30. N.F. Mott, E.A. Davis, Electronic process in non crystalline materials. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  31. I. Mansuri, D. Varsheny, J. Alloys Compd. 513, 256–265 (2012)

    Google Scholar 

  32. G.F. Pike, Phys. Rev. B: Solid State 513, 256–265 (2012)

    Google Scholar 

  33. S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, J. Alloys Compd. 574, ,290–298 (2013)

    Google Scholar 

  34. P. Córdoba-Torres, T.J. Mesquita, O. Devos, B. Tribollet, V. Roche, R.P. Nogueira, J. Electrochim. Acta 72, ,172–178 (2012)

    Google Scholar 

  35. M.E. Hirschorn, B. Orazema, V. Tribollet, I. Vivier, M. Frateur, Musiani, J. Electrochim. Acta 55, 6218–6227 (2010)

    Google Scholar 

  36. P. Zoltowski, J. Electroanal. Chem 443, 149–154 (1998)

    Google Scholar 

  37. Z. Stoynov, D. Vladikova, Differential impedance analysis. (Marin Drinov Academic Publishing House, Bulgarie, 2005)

    Google Scholar 

  38. M. Nadeem, M.J. Akhtar, A.Y. Khan, Solid State Commun. 134, 431–436 (2005)

    ADS  Google Scholar 

  39. M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Hoque, Chem. Phys. Lett. 366, 433–439 (2002)

    ADS  Google Scholar 

  40. N. Ahlawat, M. Sindhu, S. Sanghi, A. Agarwal, R. Dahiya, N. Ahlawat, Curr. Appl. Phys. 12, 1429–1435 (2012)

    ADS  Google Scholar 

  41. X. Li, H. Zhao, F. Gao, Z. Zhu, N. Chen, W. Shen, Solid State Ionics 179, 1588–1592 (2008)

    Google Scholar 

  42. S. Sen, S.K. Mishra, S.K. Das, A. Tarafdar, J. Alloy. Compd. 453, 395–400 (2008)

    Google Scholar 

  43. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull. 93, 63–73 (2017)

    Google Scholar 

  44. R. Brahem, H. Rahmouni, N. Farhat, J. Dhahri, K. Khirouni, L.C. Costa, Ceram. Int. 40, 9355–9360 (2014)

    Google Scholar 

  45. N.K. Singh, A. Panigrahi, R.N.P. Chaudhary, Mater. Lett 50, 1–5 (2001)

    Google Scholar 

  46. T. Kar, R.N.P. Chaudhary, Mater. Sci. Eng. B 90, 224–233 (2002)

    Google Scholar 

  47. C.G. Koops, Phys. Rev 6, 108 (1997)

    Google Scholar 

  48. J.C. Maxwell, Electricity and magnetism. (Oxford University Press, London, 1973)

    Google Scholar 

  49. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  50. N.V. Prasad, G. Prasad, T. Bhimasankaran, S.V. Suryanarayana, G.S. Kumar, Bull. Mater. Sci. 19, 639–643 (1996)

    Google Scholar 

  51. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi. RSC Adv. 7, 16319–16331 (2017)

    Google Scholar 

  52. Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen, Q. Zheng, J.-K. Kim. Carbon 123, 385–394 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Rayssi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayssi, C., Rhouma, F.I.H., Dhahri, J. et al. Structural, electric and dielectric properties of Ca0.85Er0.1Ti1−xCo4x/3O3(0 ≤ x ≤ 0.1). Appl. Phys. A 123, 778 (2017). https://doi.org/10.1007/s00339-017-1365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1365-8

Keywords

Navigation