Log in

Coupled V-structured nano-antenna for electromagnetic field enhancement

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nano-antennas play an important role in many areas of science and technology. It is desirable to achieve strong electric field enhancement by nano-antenna. In this paper, we simulate a symmetrical V-structured nano-antenna that is used to regulate the electromagnetic fields in the central gap region. We study the effects of structural parameters on the charge distribution and analyze the electric field enhancement factor in the central region of the nano-antenna. Then we use structural coupling methods to strengthen electromagnetic field intensity in the central region. Our results demonstrate that the charge distribution of the nano-antenna can be controlled by regulating the structural parameters, leading to the change of electromagnetic field intensity. In addition, electric field enhancement is achieved by coupling of multiple V structures. The multiple V structure could be used in surface-enhanced Raman scattering due to the electric field enhancement in its central region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Zou, G.C. Schatz, Silver nanoparticle array structures that produce giant enhancements in electromagnetic field. Chem. Phys. Lett. 403(1), 62–67 (2005)

    Article  ADS  Google Scholar 

  2. R. Marty, G. Baffou, A. Arbouet, C. Girard, Charge distribution induced inside complex plasmonic nanoparticles. Opt. Express 18(3), 3035–3044 (2010)

    Article  ADS  Google Scholar 

  3. M. Gharibi, H. Khoshsima, B. Olyaeefar et al., Field enhancement by plasmonic contour H-shaped nano-antenna. Eur. Phys. J. D 68(5), 1–5 (2014)

    Article  Google Scholar 

  4. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nano-antennas. Phys. Rev. Lett. 94(1), 017402 (2005)

    Article  ADS  Google Scholar 

  5. K.C. Vernon, T.J. Davis, F.H. Scholes, D.E. Gomez, Physical mechanisms behind the SERS enhancement of pyramidal pit substrates. J. Raman Spectrosc. 41(10), 1106–1111 (2010)

    Article  ADS  Google Scholar 

  6. B. Sharma, R.R. Frontiera, E. Henry, SERS: materials, applications, and the future. Mater. Today 15(1), 16–25 (2012)

    Article  Google Scholar 

  7. W. **e, B. Walkenfort, S. Schlücker, Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 135(5), 1657–1660 (2012)

    Article  Google Scholar 

  8. M. Rycenga, X. **a, C.H. Moran, F. Zhou et al., Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhancement Raman scattering. Angew. Chem. 123(24), 5587–5591 (2011)

    Article  Google Scholar 

  9. N.A. Hatab, C.H. Hsueh et al., Free-standing optical gold bowtie nano-antenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10(12), 4952–4955 (2010)

    Article  ADS  Google Scholar 

  10. S. Zhang, Y.S. Park et al., Far-field measurement of ultra-small plasmonic mode volume. Opt. Express 18(6), 6048–6055 (2010)

    Article  ADS  Google Scholar 

  11. L.V. Brown, K. Zhao, N. King, H. Sobhani et al., Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. J. Am. Chem. Soc. 135(9), 3688–3695 (2013)

    Article  Google Scholar 

  12. A. El Eter, N.M. Hameed et al., Fiber-integrated optical nano-tweezer based in a bowtie-aperture nano-antenna at the apex of SNOM tip. Opt. Express 22(8), 10072–10080 (2014)

    Article  ADS  Google Scholar 

  13. J. Yang, F. Kong, K. Li, Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor. Opt. Commun. 342, 230–237 (2015)

    Article  ADS  Google Scholar 

  14. L. Wang, Y. Du, Directional field enhancement of dielectric nano optical disc antenna array. Opt. Mater. 34(1), 126–130 (2011)

    Article  ADS  Google Scholar 

  15. F.B. Zarrabi, Z. Mansouri, R. Ahmadian et al., Nanoscale plasmonic antenna difference formation implementation effect on field enhancement. Opt. Int. J. Light Electron Opt. 126(22), 3424–3428 (2015)

    Article  Google Scholar 

  16. F.B. Zarrabi, H. Kuhestani et al., Plasmonic cross-junction ring antenna implementation for field enhancement. Opt. Int. J. Light Electron Opt. 126(21), 3129–3131 (2015)

    Article  Google Scholar 

  17. H.T. Hattori, Z. Li, Arrays of recycled power TM polarized nano-antennas. Opt. Express 21(14), 16273–16281 (2013)

    Article  ADS  Google Scholar 

  18. C. Tira, D. Tira et al., Finite-difference time-domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance. J. Mol. Struct. 1072(12), 137–143 (2014)

    Article  ADS  Google Scholar 

  19. B.B. Alagoz, H.Z. Alisoy, S. Alagoz, F. Hansu, A space charge motion simulation with FDTD method and application in negative corona electrostatic field analysis. Appl. Math. Comput. 218(218), 9007–9017 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Yang, Y. Liu, R.F. Oulton, X. Zhang, Optical forces in hybrid plasmonic waveguides. Nano Lett. 11(2), 321–328 (2011)

    Article  ADS  Google Scholar 

  21. M.N. Gadalla, M. Abdel-Rahman, A. Shamim, Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci. Rep. 4, 4270 (2014). doi:10.1038/srep04270

    Article  ADS  Google Scholar 

  22. G. Bi et al., Optical properties of gold nano-bowtie structures. Opt. Commun. 294, 213–217 (2013)

    Article  ADS  Google Scholar 

  23. W. Xu, G. Meng, Q. Huang et al., Large-scale uniform AG-NW tip array with enriched sub-10-nm gaps as SERS substrate for rapid determination of trace PCB77. Appl. Surf. Sci. 271(5), 125–130 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Natural Science Foundation of Tian** City (14JCYBJC30500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhang, W., Feng, Y. et al. Coupled V-structured nano-antenna for electromagnetic field enhancement. Appl. Phys. A 123, 319 (2017). https://doi.org/10.1007/s00339-017-0952-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0952-z

Keywords

Navigation