Log in

Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Shibuya, M. Ozawa, Strip casting techniques for steel. ISIJ Int. 31, 661–668 (1991)

    Article  Google Scholar 

  2. Y. Fujita et al., Solidification and roll-bonding of shells in twin-roll casting process. ISIJ Int. 29, 495–502 (1989)

    Article  Google Scholar 

  3. M. Gupta, Y. Sahai, Mathematical modeling of fluid flow, heat transfer, and solidification in two-roll drag thin strip casting of steel. ISIJ Int. 40, 144–152 (2000)

    Article  Google Scholar 

  4. D.J. Phelan et al., Experimental studies into strip casting of steel. Mater. Sci. Forum 539–543, 4155–4160 (2007)

    Article  Google Scholar 

  5. H. Girgensohn, A.R. Buchner et al., Twin roll strip casting of low carbon steels. Ironmaking Steelmaking 27, 317 (2000)

    Article  Google Scholar 

  6. T. Haga et al., Semisolid strip casting using a vertical type twin roll caster. Mater. Sci. Forum 426–432, 477–482 (2003)

    Article  Google Scholar 

  7. T. Haga et al., High speed roll casting of aluminum alloy strip. Mater. Sci. Forum 475–479, 343–349 (2005)

    Article  Google Scholar 

  8. T. Mizoguc et al., Relation between surface quality of as-cast strips and meniscus profile of molten pool in the twin roll casting process. ISIJ Int. 36, 417–423 (1996)

    Article  Google Scholar 

  9. L. Strezov, J. Herbertson, Experimental studies of interfacial heat transfer and initial solidification pertinent to strip casting. ISIJ Int. 38, 959–966 (1998)

    Article  Google Scholar 

  10. X.D. Hu, D.Y. Ju, H.Y. Zhao, Thermal flow simulation and concave type slot nozzle design for twin roll casting of magnesium alloy Az31. Mater. Sci. Forum 539–543, 5037–5042 (2007)

    Article  Google Scholar 

  11. B.Q. Zhu, H. Chen, M. Militzer, Phase-field modeling of cyclic phase transformations in low-carbon steels. Comput. Mater. Sci. 108, 333–341 (2015)

    Article  Google Scholar 

  12. H. **ng, X.L. Dong, C.L. Chen, J.Y. Wang, L.F. Du, K.X. **, Phase-field simulation of titled growth of dendritic arrays during directional solidification. Int. J. Heat Mass Transf. 90, 911–921 (2015)

    Article  Google Scholar 

  13. R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410–423 (1993)

    Article  ADS  MATH  Google Scholar 

  14. A.A. Wheeler, B.T. Murrary, R.J. Schaefer, Computation of dendrites using a phase field model. Physica D 66, 243–262 (1993)

    Article  ADS  MATH  Google Scholar 

  15. A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45, 7424–7439 (1992)

    Article  ADS  Google Scholar 

  16. S.G. Kim, W.T. Kim, T. Suzuki, Phase-field model for binary alloys. Phys. Rev. E 60, 7186–7197 (1999)

    Article  ADS  Google Scholar 

  17. M. Chen, X.D. Hu, D.Y. Ju, H.Y. Zhao, The microstructure prediction of magnesium alloy crystal growth in directional solidification. Comput. Mater. Sci. 79, 684–690 (2013)

    Article  Google Scholar 

  18. F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  ADS  MATH  Google Scholar 

  19. W. Kurz, D.J. Fisher, Fundamentals of solidification (Trans Tech Publications Ltd, Enfield, 1998)

    Google Scholar 

  20. J.S. Langer, Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 21–28 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the LNIRT (LT2015014) and the Talent Fund of University of Science and Technology Liaoning (2013RC04). The authors wish to thank the help given by the Roll casting Research Center of Magnesium Alloy in University of Science and Technology Liaoning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ying Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Hu, XD., Han, B. et al. Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process. Appl. Phys. A 122, 91 (2016). https://doi.org/10.1007/s00339-016-9627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9627-4

Keywords

Navigation