Log in

Investigating the nanostructured gold thin films using the multifractal analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The atomic force microscopy images representing the surface morphology of the nanostructured gold thin films of thickness of 20, 50 and 200 nm, respectively, were investigated using the multifractal analysis. The interface width and growth exponent corresponding to films of different thicknesses were estimated. The surfaces having greater roughness give rise to larger nonlinearity and wider width of the multifractal spectrum. The statistical tests confirm that the gold thin film surfaces under investigation are multifractal in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    Article  Google Scholar 

  2. E.M. Fernandez, J.M. Soler, I.L. Garzon, L.C. Balbas, Trends in the structure and bonding of noble metal clusters. Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  3. D.M. Kolb, Electrochemical surface science. Angew. Chem. Int. Edn. 40, 1162–1181 (2001)

    Article  Google Scholar 

  4. A. Dawson, P.V. Kamat, Semiconductor-metal nanocomposites photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles. J. Phys. Chem. B 105, 960–966 (2001)

    Article  Google Scholar 

  5. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced raman scattering (SERS) phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  ADS  Google Scholar 

  6. X. Yu, Z.Q. Wang, Y.G. Jiang, F. Shi, X. Zhang, Reversible pH-Responsive surface: from superhydrophobicity to superhydrophilicity. Adv. Mater. 17, 1289–1293 (2005)

    Article  Google Scholar 

  7. M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997)

    Article  Google Scholar 

  8. J.F. Hainfeld, F.A. Dilmanian, D.N. Slatkin, H.M. Smilowitz, Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol. 60, 977–985 (2008)

    Article  Google Scholar 

  9. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, ADNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    Article  ADS  Google Scholar 

  10. M. Bechelany, P. Brodard, J. Elias, A. Brioude, J. Michler, L. Philippe, Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization. Langmuir 26, 14364–14371 (2010)

    Article  Google Scholar 

  11. J. Elias, M. Gizowska, P. Brodard, R. Widmer, Y. Dehazan, T. Graule, J. Michler, L. Philippe, Electrodeposition of gold thin films with controlled morphologies and their applications in electrocatalysis and SERS. Nanotechnology 23, 255705 (2012)

    Article  ADS  Google Scholar 

  12. H. You, R.P. Chiarello, H.K. Kim, K.Q. Vandervoort, X-Ray reflectivity and scanning-tunneling-microscope study of kinetic roughening of sputter-deposited gold films during growth. Phys. Rev. Lett. 70, 2900–2903 (1993)

    Article  ADS  Google Scholar 

  13. F. Ruffino, M.G. Grimaldi, F. Giannazzo, F. Roccaforte, V. Raineri, Atomic force microscopy study of the kinetic roughening in nanostructured gold films on SiO2. Nanoscale Res. Lett. 4, 262–268 (2009)

    Article  ADS  Google Scholar 

  14. F. Ruffino, V. Torrisi, G. Marletta, M.G. Grimaldi, Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards nanoscale morphology control. Nanoscale Res. Lett. 6, 112 (2011)

    Article  ADS  Google Scholar 

  15. F. Ruffino, A. Irrera, R. De Bastiani, M.G. Grimaldi, Room-temperature grain growth in sputtered nanoscale Pd thin films: dynamic scaling behavior on SiO2. J. Appl. Phys. 106, 084309 (2009)

    Article  ADS  Google Scholar 

  16. F. Ruffino, V. Torrisi, G. Marletta, M.G. Grimaldi, Kinetic growth mechanisms of sputter-deposited Au films on mica: from nanoclusters to nanostructured microclusters. Appl. Phys. A 100, 7–13 (2010)

    Article  ADS  Google Scholar 

  17. F. Ruffino, M.G. Grimaldi, Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si (111): evolution with film thickness and annealing time. J. Appl. Phys. 107, 104321 (2010)

    Article  ADS  Google Scholar 

  18. O. Akhavan, AFM spectral analysis of self-agglomerated metallic nanoparticles on silica thin films. Curr. Nanosci. 6, 116–123 (2010)

    Article  ADS  Google Scholar 

  19. T. Karabacak, Y.-P. Zhao, G.C. Wang, T.M. Lu, Growth-front roughening in amorphous silicon films by sputtering. Phys. Rev. B 64, 085323 (2001)

    Article  ADS  Google Scholar 

  20. M.E.R. Dotto, S.S. Camargo Jr, Scaling law analysis of paraffin thin films on different surfaces. J. Appl. Phys. 107, 014911 (2010)

    Article  ADS  Google Scholar 

  21. A.Y. Gil, J. Cotino, A.W. Pietrzykowska, A.R.G. Elipe, Scaling behavior and mechanism of formation of SiO2 thin films grown by plasma-enhanced chemical vapor deposition. Phys. Rev. B 76, 075314 (2007)

    Article  ADS  Google Scholar 

  22. S. Yim, T.S. Jones, Anomalous scaling behavior and surface roughening in molecular thin-film deposition. Phys. Rev. B 73, 161305(R) (2006)

    Article  ADS  Google Scholar 

  23. R.P. Yadav, S. Dwivedi, A.K. Mittal, M. Kumar, A.C. Pandey, Fractal and multifractal analysis of LiF thin film surface. Appl. Surf. Sci. 261, 547–553 (2012)

    Article  ADS  Google Scholar 

  24. G.-F. Gu, W.-X. Zhou, Detrended fluctuation analysis for fractals and multifractals in higher dimensions. Phys. Rev. E 74, 061104 (2006)

    Article  ADS  Google Scholar 

  25. C. Liu, X.-L. Jiang, T. Liu, L. Zhao, W.-X. Zhou, K. Yuan, Multifractal analysis of the fracture surfaces of foamed polypropylene/polyethylene blends. Appl. Surf. Sci. 255, 4239–4245 (2009)

    Article  ADS  Google Scholar 

  26. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A 316, 87–114 (2002)

    Article  MATH  Google Scholar 

  27. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Z. Moktadir, M. Kraft, H. Wensink, Multifractal properties of pyrex and silicon surfaces blasted with sharp particles. Phys. A 387, 2083–2090 (2008)

    Article  Google Scholar 

  29. Z. Yu, L. Yee, Y.Z. Guo, Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis. Chin. Phys. B 20, 090507 (2011)

    Article  Google Scholar 

  30. X.Y. Qian, G.F. Gu, W.X. Zhou, Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes. Phys. A 390, 4388–4395 (2011)

    Article  Google Scholar 

  31. M.R. Niu, W.X. Zhou, Z.Y. Yan, Q.H. Guo, Q.F. Liang, F.C. Wang, Z.H. Yu, Multifractal detrended fluctuation analysis of combustion flames in four-burner im**ing entrained-flow gasifier. Chem. Eng. J. 143, 230–235 (2008)

    Article  Google Scholar 

  32. Z.-Q. Jiang, W.-X. Zhou, Multifractality in stock indexes: fact or fiction? Phys. A 387, 3605–3614 (2008)

    Article  Google Scholar 

  33. Z.-Q. Jiang, W.-X. Zhou, Multifractal analysis of Chinese stock volatilities based on the partition function approach. Phys. A 387, 4881–4888 (2008)

    Article  Google Scholar 

  34. C. Thompson, G. Palasantzas, Y.P. Feng, S.K. Sinha, J. Krim, X-ray-reflectivity study of the growth kinetics of vapor-deposited silver films. Phys. Rev. B 49, 4902 (1994)

    Article  ADS  Google Scholar 

  35. J. Chevrier, V.L. Thanh, R. Buys, J. Derrien, A RHEED study of epitaxial growth of iron on a silicon surface: experimental evidence for kinetic roughening. Europhys. Lett. 16, 737 (1991)

    Article  ADS  Google Scholar 

  36. H.J. Ernst, F. Fabre, R. Folkerts, J. Lapujoulade, Observation of growth instability during low temperature molecular beam epitaxy. Phys. Rev. Lett. 72, 112–115 (1994)

    Article  ADS  Google Scholar 

  37. E. Rodrıguez-Canas, J.A. Aznarez, A.I. Oliva, J.L. Sacedon, Relationship between the surface morphology and the height distribution curve in thermal evaporated Au thin films. Surf. Sci. 600, 3110–3120 (2006)

    Article  ADS  Google Scholar 

  38. G. Palasantzas, J. Krim, Scanning tunneling microscopy study of the thick film limit of kinetic roughening. Phys. Rev. Lett. 73, 3564–3567 (1994)

    Article  ADS  Google Scholar 

  39. W. Wang, A. Li, X. Zhang, Y. Yin, Multifractality analysis of crack images from indirect thermal drying of thin-film dewatered sludge. Phys. A 390, 2678–2685 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

RPY is thankful to the CSIR-UGC for providing financial support in the form of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.P., Singh, U.B., Mittal, A.K. et al. Investigating the nanostructured gold thin films using the multifractal analysis. Appl. Phys. A 117, 2159–2166 (2014). https://doi.org/10.1007/s00339-014-8636-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8636-4

Keywords

Navigation