Log in

Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We provide guidelines to femtosecond laser users to select ad hoc laser parameters, namely the fluence and pulse duration, in the context of the development of ablation processes at the surface of dielectrics using single femtosecond pulses. Our results and discussion are based on a comprehensive experimental and theoretical analysis of the energy deposition process at the surface of fused silica samples and of their postmortem ablation characteristics, in the range of intensities from 1013 to 1015 W/cm2. We show experimentally and numerically that self-induced plasma transient properties at the pulse timescale dramatically determine the efficiency of energy deposition and affect the resulting ablation morphology. In practice, we determine that the precise measurement of two characteristic fluence values, namely the laser-induced ablation threshold F th,LIAT and the fluence F opt for maximum ablation efficiency, are only required to qualify the outcomes of laser ablation at the surface of a dielectric in an extended range of applied fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Gattass, E. Mazur, Nat. Phot. 2, 219 (2008)

    Article  Google Scholar 

  2. S. Juodkazis, V. Mizeikis, H. Mizawa, J. Appl. Phys. 106, 051101 (2009)

    Article  ADS  Google Scholar 

  3. S.H. Chung, E. Mazur, J. Biophoton. 2(10), 557 (2009)

    Article  Google Scholar 

  4. F. Dausinger, F. Lichtner, H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004)

    Book  Google Scholar 

  5. E. Stratakis, A. Ranella, M. Farsari, C. Fotakis, Prog. Quantum Electron. 33, 127 (2009)

    Article  ADS  Google Scholar 

  6. C. Rullière (ed.), Femtosecond Laser Pulses: Principles and experiments, 2nd edn. (Springer, Berlin, 2003)

  7. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomenon: Fundamentals, Techniques and Applications on a Femtosecond Time Scale (Academic, Boston, 1996)

    Google Scholar 

  8. E. Gamaly, Femtosecond Laser-Matter Interactions (Pan Stanford Publishing, Singapore, 2011)

    Google Scholar 

  9. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85(9), 6803 (1999)

    Article  ADS  Google Scholar 

  10. K. Sugioka, Y. Cheng (eds.), Ultrafast Laser Processing: From Micro- to Nanoscale (Pan Stanford Publishing, Singapore, 2013)

  11. W. Sibbett, A.A. Lagatsky, C.T.A. Brown, Opt. Exp. 20(7), 6989 (2012)

    Article  ADS  Google Scholar 

  12. P. Martin, S. Guizard, Ph Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, M. Perdrix, Phys. Rev. B 55(9), 5799 (1997)

    Article  ADS  Google Scholar 

  13. R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Phys. Rev. B 88(9), 097603 (2002)

    Google Scholar 

  14. M. Li, S. Menon, J.P. Nibarger, G.N. Gibson, Phys. Rev. Lett. 82, 2394 (1999)

    Article  ADS  Google Scholar 

  15. A.Q. Wu, I.H. Chowdhury, X. Xu, Phys. Rev. B 72, 085128 (2005)

    Article  ADS  Google Scholar 

  16. G.M. Petrov, J. Davis, J. Phys. B At. Mol. Opt. Phys. 41, 025601 (2008)

    Article  ADS  Google Scholar 

  17. D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B 27, 1065 (2010)

    Article  ADS  Google Scholar 

  18. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  19. L.V. Keldysh, Sov. Phys. JETP 20(5), 1307 (1965)

    MathSciNet  Google Scholar 

  20. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9(3), 949 (2002)

    Article  ADS  Google Scholar 

  21. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Phys. Rev. B 61(17), 11437 (2000)

    Article  ADS  Google Scholar 

  22. J.R. Peňano, P. Sprangle, B. Hafizi, W. Manheimer, A. Zigler, Phys. Rev. E 72, 036412 (2005)

    Article  ADS  Google Scholar 

  23. M.D. Feit, A.M. Komashko, A.M. Rubenchik, Appl. Phys. A 79, 1657 (2004)

    Article  ADS  Google Scholar 

  24. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, Appl. Phys. A 81, 345 (2005)

    Article  ADS  Google Scholar 

  25. C. Mézel, A. Bourgeade, L. Hallo, Phys. Plasmas 17, 113504 (2010)

    Article  ADS  Google Scholar 

  26. P. Balling, J. Shou, Rep. Prog. Phys. 76, 036502 (2013)

    Article  ADS  Google Scholar 

  27. P.P. Rajeev, D. Gertsvolf, P.B. Corkum, D.M. Rayner, Phys. Rev. Lett. 102, 083001 (2009)

    Article  ADS  Google Scholar 

  28. T. Jia, Z. Xu, R. Li, D. Feng, X. Li, C. Cheng, H. Sun, N. Xu, H. Wang, J. Appl. Phys. 95(9), 5166 (2004)

    Article  ADS  Google Scholar 

  29. A.M. Weiner, Opt. Commun. 284, 3669 (2011)

    Article  ADS  Google Scholar 

  30. T. Brixner, N.H. Damrauer, G. Krampert, P. Niklaus, G. Gerber, J. Opt. Soc. Am. B Opt. Phys. 20(5), 878 (2003)

    Article  ADS  Google Scholar 

  31. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, Opt. Laser. Eng. 45, 737 (2007)

    Article  Google Scholar 

  32. N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, M. Sentis, Appl. Phys. A 94, 889 (2009)

    Article  ADS  Google Scholar 

  33. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, Opt. Exp. 7(2), 41 (2000)

    Article  ADS  Google Scholar 

  34. Standard ISO 11254-1, Determination of Laser-Damage Threshold of Optical Surfaces. 1. 1-on-1 test (International Organization for Standardization, Geneva, Switzerland, 2000)

  35. B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, J.C. Kieffer, Phys. Rev. B 84, 094104 (2011)

    Article  ADS  Google Scholar 

  36. O. Utéza, N. Sanner, B. Chimier, A. Brocas, N. Varkentina, M. Sentis, P. Lassonde, F. Légaré, J.C. Kieffer, Appl. Phys. A 105, 131 (2011)

    Article  ADS  Google Scholar 

  37. I.H. Chowdhury, A.Q. Wu, X. Xu, A.M. Weiner, Appl. Phys. A 81, 1627 (2005)

    Article  ADS  Google Scholar 

  38. S.C. Rae, K. Burnett, Phys. Rev. A 46, 1084 (1992)

    Article  ADS  Google Scholar 

  39. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D.M. Rayner, P.B. Corkum, Phys. Rev. B 81, 212301 (2010)

    Article  ADS  Google Scholar 

  40. L. Jiang, H.L. Tsai, J. Appl. Phys. 104, 093101 (2008)

    Article  ADS  Google Scholar 

  41. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80(18), 4076 (1998)

    Article  ADS  Google Scholar 

  42. D. Arnold, E. Cartier, D.J. DiMaria, Phys. Rev. B 49, 10278 (1994)

    Article  ADS  Google Scholar 

  43. K. Eidmann, J. Meyer-ter Vehn, T. Schlegel, and S. Hüller, Phys. Rev. E 62, 1202 (2000)

    Google Scholar 

  44. J.D. Huba (ed.), NRL Plasma Formulary (Naval Research Laboratory Publication, Washington, DC, 2005)

  45. A. Belsky, P. Martin, H. Bachau, A.N. Vasil’ev, B.N. Yatsenko, S. Guizard, G. Geoffroy, G. Petite, Europhys. Lett. 67, 301 (2004)

    Article  ADS  Google Scholar 

  46. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62, 13167 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the French National Agency of Research (ANR) under the contracts “Festic-ANR-06-BLAN-0298-02” and “Nanomorphing-07-BLAN-0301-03” and by the Region Provence–Alpes–Côte d’Azur and Department of Bouches-du-Rhône.

We also thank our colleagues B. Chimier (CELIA, France), T. Itina (LaHC, France) and N. Varkentina (LOMA, France) for stimulating discussions on the results presented in this paper and P. Lassonde, F. Légaré and J.C. Kieffer of INRS-EMT (Québec, Canada) for providing the laser damage setup and their help in performing and interpreting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sentis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebugle, M., Sanner, N., Utéza, O. et al. Guidelines for efficient direct ablation of dielectrics with single femtosecond pulses. Appl. Phys. A 114, 129–142 (2014). https://doi.org/10.1007/s00339-013-8153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8153-x

Keywords

Navigation