Log in

Pulsed laser CVD investigations of single-wall carbon nanotube growth dynamics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (>0.5 ms) was implemented to rapidly heat (>3×104°C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of >0.1 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerence and Carbon Nanotubes (Academic, San Diego, 1996)

    Google Scholar 

  2. J.Q. Lu, T.E. Kopley, N. Moll, D. Roitman, D. Chamberlin, Q. Fu, J. Liu, T.P. Russell, D.A. Rider, I. Manners, M.A. Winnik, Chem. Mater. 17(9), 2227 (2005)

    Article  Google Scholar 

  3. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.C. Charlier, Phys. Rev. Lett. 87, 275504 (2001)

    Article  ADS  Google Scholar 

  4. H. Kanzow, A. Ding, Phys. Rev. B 60, 11180 (1999)

    Article  ADS  Google Scholar 

  5. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Oedersen, J.K. Norskov, Nature 427, 426 (2004)

    Article  ADS  Google Scholar 

  6. M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y. Foo, Nano Lett. 6, 449 (2006)

    Article  ADS  Google Scholar 

  7. R. Sharma, Z. Iqbal, Appl. Phys. Lett. 84, 990 (2004)

    Article  ADS  Google Scholar 

  8. A.A. Puretzky, D.B. Geohegan, X. Fan, S. Pennycook, Appl. Phys. Lett. 76, 182–184 (2000)

    Article  ADS  Google Scholar 

  9. D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Phys. Rev. Lett. 95, 056104 (2005)

    Article  ADS  Google Scholar 

  10. H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, K. Hata, S. Iijima, Small 1, 1180 (2005)

    Article  Google Scholar 

  11. S. Huang, X. Cai, J. Liu, J. Am. Chem. Soc. 125, 5636–5637 (2003)

    Article  Google Scholar 

  12. Y. Fujiwara, K. Maehashi, Y. Ohno, K. Inoue, K. Matsumoto, Jpn. J. Appl. Phys. 44, 1581 (2005)

    Article  ADS  Google Scholar 

  13. S.N. Bondi, W.J. Lackey, R.W. Johnson, X. Wang, Z.L. Wang, Carbon 44, 1393 (2006)

    Article  Google Scholar 

  14. S. Chiashi, M. Kohno, Y. Takata, S. Maruyama, J. Phys. Conf. Ser. 59, 155 (2007)

    Article  ADS  Google Scholar 

  15. K. Kaysuya, K. Nagato, Y. **, H. Morii, T. Ooi, M. Nakao, Jpn. J. Appl. Phys. 46, L333 (2007)

    Article  ADS  Google Scholar 

  16. L.X. Zhang, M.J. O’Connell, S.K. Doorn, X.Z. Liao, Y.H. Zhao, E.A. Akhadov, M.A. Hoffbauer, B.J. Roop, Q.X. Jia, R.C. Dye, D.E. Peterson, S.M. Huang, J. Liu, Y.T. Zhu, Nature Mater. 3, 673 (2004)

    Article  ADS  Google Scholar 

  17. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)

    Article  ADS  Google Scholar 

  18. A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, Appl. Phys. A 81, 223 (2005)

    Article  ADS  Google Scholar 

  19. R.F. Wood, S. Pannala, J.C. Wells, A.A. Puretzky, D.B. Geohegan, Phys. Rev. B 75, 235446 (2007)

    Article  ADS  Google Scholar 

  20. X. Liu, H. Song, C. Zhou, Nano Lett. 6, 34 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Geohegan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Styers-Barnett, D.J., Puretzky, A.A. et al. Pulsed laser CVD investigations of single-wall carbon nanotube growth dynamics. Appl. Phys. A 93, 987–993 (2008). https://doi.org/10.1007/s00339-008-4804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4804-8

PACS

Navigation