Log in

Effect of indium do** on Ge2Sb2Te5 thin films for phase-change optical storage

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of In do** on the crystallization kinetics of Ge2Sb2Te5 has been investigated using four-point-probe electrical resistance measurements, grazing incidence X-ray diffraction (XRD), X-ray reflectometry (XRR), variable incident angle spectroscopic ellipsometry, a static tester, and atomic force microscopy. For a stoichiometric Ge2Sb2Te5 alloy doped with 3% In, the amorphous-to-crystalline transition is observed at 150 °C in the sheet resistance measurements. XRD reveals the formation of a predominant NaCl-type Ge2Sb2Te5 phase during the amorphous-to-crystalline transition together with small amounts of crystalline In2Te3. Density values of 5.88±0.05 g cm-3 and 6.22±0.05 g cm-3 are measured by XRR for the film in the amorphous and crystalline states, respectively. Perfect erasure can be achieved by laser pulses longer than 165 ns. The retarded crystallization, as compared with the undoped Ge2Sb2Te5 alloy, is attributed to the observed phase segregation. Sufficient optical contrast is exhibited and can be correlated with the large density change upon crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys. 39, 770 (2000)

    Google Scholar 

  2. G.F. Zhou, Mater. Sci. Eng. A 304306, 73 (2001)

    Google Scholar 

  3. S.R. Ovshinsky, Phys. Rev. Lett. 21, 20 (1968)

    Google Scholar 

  4. M. Libera, M. Chen, Mater. Res. Soc. Bull. 15, 40 (1990)

    Google Scholar 

  5. T. Matsunaga, N. Yamada, Jpn. J. Appl. Phys. 41, 1674 (2002)

    Google Scholar 

  6. N. Yamada, Mater. Res. Soc. Bull. 21, 48 (1996)

    Google Scholar 

  7. M.H.R. Lankhorst, L. van Pieterson, M. van Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 42, 863 (2003)

    Google Scholar 

  8. R.T. Young, D. Strand, J. Gonzalez-Hernandez, S.R. Ovshinsky, J. Appl. Phys. 60, 4319 (1986)

    Google Scholar 

  9. M. Terao, Y. Miyauchi, K. Andoo, R. Tamura: Optoelectron. Devices Technol. 4, 223 (1989)

    CAS  Google Scholar 

  10. C. Lie, P. Kuo, W. Hsu, T. Wu, P. Chen, S. Chen, Jpn. J. Appl. Phys. 42, 1026 (2003)

    Google Scholar 

  11. A. Hirotsune, Y. Miyauchi, M. Terao, Appl. Phys. Lett. 66, 2312 (1995)

    Google Scholar 

  12. T. Matsushita, A. Suzuki, T. Kamitani, M. Okuda, Proc. SPIE 2053, 70 (1993)

  13. P.K. Khulbe, E.M. Wright, M. Mansuripur, J. Appl. Phys. 88, 3926 (2000)

    Google Scholar 

  14. N. Yamada, T. Matsunaga, J. Appl. Phys. 88, 7020 (2000)

    Google Scholar 

  15. S. Privitera, E. Rimini, C. Bongiorno, R. Zonca, A. Pirovano, R. Bez, J. Appl. Phys. 94, 4409 (2003)

    Google Scholar 

  16. R. Kojima, T. Kouzaki, T. Matsunaga, N. Yamada, Proc. SPIE 3401, 14 (1998)

    Google Scholar 

  17. G. Zhou, B.A.J. Jacobs, Jpn. J. Appl. Phys. 138, 1625 (1999)

    Google Scholar 

  18. D.Z. Dimitrov, Y. Lu, M. Tseng, W. Hsu, H. Shieh, Jpn. J. Appl. Phys. 141, 1656 (2002)

    Google Scholar 

  19. E. Prokhorov, G. Trapaga, E. Morales-Sanchez, M. Hernandez-Landaverde, Y. Kovalenko, J. Gonzalez-Hernandez, J. Appl. Phys. 96, 1040 (2004)

    Google Scholar 

  20. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87, 4130 (2000)

    Google Scholar 

  21. JCPDS Database (International Center for Diffraction Data, PA, 1999), PDF 33-1488

  22. Y. Maeda, H. Andoh, I. Ikuta, H. Minemura, J. Appl. Phys. 64, 1715 (1988)

    Google Scholar 

  23. Y. Maeda, H. Andoh, I. Ikuta, M. Nagai, Y. Katoh, H. Minemura, N. Tsuboi, Y. Satoh, N. Gotoh, M. Ishigaki, Appl. Phys. Lett. 54, 893, (1989)

    Google Scholar 

  24. L. Men, F. Jiang, F. Gan, Mater. Sci. Eng. B 47, 18 (1997)

    Google Scholar 

  25. W. Njoroge, H.-W. Woltgens, M. Wuttig, J. Vac. Sci. Technol. A 20(1), 230 (2002)

    Google Scholar 

  26. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Google Scholar 

  27. J.A. Woollam, Guide to Using WASE32TM (WexTech, New York, 1995), p. 294

  28. R. Detemple, D. Wamwangi, G. Bihlmayer, M. Wuttig, Appl. Phys. Lett. 83, 2572 (2003)

    Google Scholar 

  29. M. Luo, M. Wuttig, Adv. Mater. 16, 439 (2004)

    Google Scholar 

  30. V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig: J. Appl. Phys. 89, 3168 (2001)

    Article  CAS  Google Scholar 

  31. J.H. Coombs, A.P.J.M. Jongenelis, W. van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78, 4918 (1995)

    Google Scholar 

  32. K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, M.J. Kang, S.Y. Choi, M. Wuttig, Phys. Status Solidi A 201, 3087 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wuttig.

Additional information

PACS

68.55.-a; 78.20.-e; 78.66.Jg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Steimer, C., Wamwangi, D. et al. Effect of indium do** on Ge2Sb2Te5 thin films for phase-change optical storage. Appl. Phys. A 80, 1611–1616 (2005). https://doi.org/10.1007/s00339-005-3232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3232-2

Keywords

Navigation