Log in

Diagnosis of dysthyroid optic neuropathy: combined value of orbital MRI and intracranial visual pathway diffusion kurtosis imaging

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the combined performance of orbital MRI and intracranial visual pathway diffusion kurtosis imaging (DKI) in diagnosing dysthyroid optic neuropathy (DON).

Methods

We retrospectively enrolled 61 thyroid-associated ophthalmopathy (TAO) patients, including 25 with DON (40 eyes) and 36 without DON (72 eyes). Orbital MRI–based apical muscle index (MI), diameter index (DI) of the optic nerve (ON), area index (AI) of the ON, apparent diffusion coefficient (ADC) and signal intensity ratio (SIR) of the ON, DKI-based kurtosis fractional anisotropy (KFA) and mean kurtosis (MK) of the optic tract (OT), optic radiation (OR), and Brodmann areas (BAs) 17, 18, and 19 were measured and compared between groups. The diagnostic performances of models were evaluated using receiver operating characteristic curve analyses and compared using the DeLong test.

Results

TAO patients with DON had significantly higher apical MI, apical AI, and SIR of the ON, but significantly lower ADC of the ON than those without DON (p < 0.05). Meanwhile, the DON group exhibited significantly lower KFA across the OT, OR, BA17, BA18, and BA19 and lower MK at the OT and OR than the non-DON group (p < 0.05). The model integrating orbital MRI and intracranial visual pathway DKI parameters performed the best in diagnosing DON (AUC = 0.926), with optimal diagnostic sensitivity (80%) and specificity (94.4%), followed by orbital MRI combination (AUC = 0.890), and then intracranial visual pathway DKI combination (AUC = 0.832).

Conclusion

Orbital MRI and intracranial visual pathway DKI can both assist in diagnosing DON. Combining orbital and intracranial imaging parameters could further optimize diagnostic efficiency.

Clinical relevance statement

The novel finding could bring novel insights into the precise diagnosis and treatment of dysthyroid optic neuropathy, accordingly, contributing to the improvement of the patients’ prognosis and quality of life in the future.

Key Points

Orbital MRI and intracranial visual pathway diffusion kurtosis imaging can both assist in diagnosing dysthyroid optic neuropathy.

Combining orbital MRI and intracranial visual pathway diffusion kurtosis imaging optimized the diagnostic efficiency of dysthyroid optic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AI:

Area index

AUC:

Area under the curve

BA:

Brodmann area

BCVA:

Best-corrected visual acuity

CAS:

Clinical activity score

CT:

Computed tomography

DI:

Diameter index

DKI:

Diffusion kurtosis imaging

DON:

Dysthyroid optic neuropathy

DTI:

Diffusion tensor imaging

EOM:

Extraocular muscle

FT3:

Free triiodothyronine

FT4:

Free thyroxine

ICC:

Intraclass correlation coefficient

IOP:

Intraocular pressure

KFA:

Kurtosis fractional anisotropy

MD:

Mean deviation

MI:

Muscle index

MK:

Mean kurtosis

MRI:

Magnetic resonance imaging

ON:

Optic nerve

OR:

Optic radiation

OT:

Optic tract

PSD:

Pattern standard deviation

ROC:

Receiver operating characteristic

ROI:

Region of interest

SI:

Signal intensity

SIR:

Signal intensity ratio

T2WI:

T2-weighted imaging

TAO:

Thyroid-associated ophthalmopathy

TRAb:

Thyrotropin receptor antibody

TSH:

Thyroid-stimulating hormone

VFI:

Visual field index

References

  1. Dolman PJ (2021) Dysthyroid optic neuropathy: evaluation and management. J Endocrinol Invest 44(3):421–429

    Article  CAS  PubMed  Google Scholar 

  2. Currò N, Guastella C, Pirola G et al (2023) Clinical and visual outcomes of dysthyroid optic neuropathy after surgical orbital decompression. Thyroid 33(6):743–751

    Article  PubMed  Google Scholar 

  3. Thyparampil P, Yen MT (2016) Compressive optic neuropathy in thyroid eye disease. Int Ophthalmol Clin 56(1):51–67

    Article  PubMed  Google Scholar 

  4. Blandford AD, Zhang D, Chundury RV, Perry JD (2017) Dysthyroid optic neuropathy: update on pathogenesis, diagnosis, and management. Expert Rev Ophthalmol 12(2):111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang M, Jiang X, Geng J, Hui S, Li D (2023) Outcomes of patients with dysthyroid optic neuropathy treated with intravenous corticosteroids and/or orbital decompression surgery: a systematic review and meta-analysis. J Clin Endocrinol Metab 108:2717–2727

    Article  PubMed  Google Scholar 

  6. Dayan CM, Dayan MR (2007) Dysthyroid optic neuropathy: a clinical diagnosis or a definable entity? Br J Ophthalmol 91(4):409–410

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rutkowska-Hinc B, Maj E, Jablonska A, Milczarek-Banach J, Bednarczuk T, Miskiewicz P (2018) Prevalence of radiological signs of dysthyroid optic neuropathy in magnetic resonance imaging in patients with active, moderate-to-severe, and very severe graves orbitopathy. Eur Thyroid J 7(2):88–94

    Article  PubMed  PubMed Central  Google Scholar 

  8. Almog Y, Nemet A (2010) The correlation between visual acuity and color vision as an indicator of the cause of visual loss. Am J Ophthalmol 149(6):1000–1004

    Article  PubMed  Google Scholar 

  9. Barrett L, Glatt HJ, Burde RM, Gado MH (1988) Optic nerve dysfunction in thyroid eye disease: CT. Radiology 167(2):503–507

    Article  CAS  PubMed  Google Scholar 

  10. Zou M, Wu D, Zhu H et al (2022) Multiparametric quantitative MRI for the evaluation of dysthyroid optic neuropathy. Eur Radiol 32(3):1931–1938

    Article  PubMed  Google Scholar 

  11. Wu H, Luo B, Yuan G et al (2021) The diagnostic value of the IDEAL-T2WI sequence in dysthyroid optic neuropathy: a quantitative analysis of the optic nerve and cerebrospinal fluid in the optic nerve sheath. Eur Radiol 31(10):7419–7428

    Article  PubMed  Google Scholar 

  12. Rohr A, Jensen U, Riedel C et al (2010) MR imaging of the optic nerve sheath in patients with craniospinal hypotension. AJNR Am J Neuroradiol 31(9):1752–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aspide R, Bertolini G, Belotti LMB et al (2023) Magnetic resonance-based assessment of optic nerve sheath diameter: a prospective observational cohort study on inter- and intra-rater agreement. J Clin Med 12(7):2713

    Article  PubMed  PubMed Central  Google Scholar 

  14. Song C, Luo Y, Huang W et al (2023) Extraocular muscle volume index at the orbital apex with optic neuritis: a combined parameter for diagnosis of dysthyroid optic neuropathy. Eur Radiol 33:9203–9212

    Article  PubMed  Google Scholar 

  15. Liu P, Luo B, Chen L et al (2023) Preliminary diffusion-tensor imaging evidence for trans-synaptic axonal degeneration in dysthyroid optic neuropathy due to thyroid-associated ophthalmopathy. J Magn Reson Imaging 57(3):834–844

    Article  PubMed  Google Scholar 

  16. Wu H, Luo B, Wang Q et al (2023) Functional and morphological brain alterations in dysthyroid optic neuropathy: a combined resting-state fMRI and voxel-based morphometry study. J Magn Reson Imaging 58(2):510–517

    Article  PubMed  Google Scholar 

  17. Li T, Qu X, Chen W et al (2020) Altered information flow and microstructure abnormalities of visual cortex in normal-tension glaucoma: evidence from resting-state fMRI and DKI. Brain Res 1741:146874

    Article  CAS  PubMed  Google Scholar 

  18. Bartley GB, Gorman CA (1995) Diagnostic criteria for Graves’ ophthalmopathy. Am J Ophthalmol 119(6):792–795

    Article  CAS  PubMed  Google Scholar 

  19. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol 47(1):9–14

    Article  CAS  Google Scholar 

  20. Zurinam O, Safieh C, Redler Y et al (2021) CT definition of the surgical apex in the orbit. Sci Rep 11(1):11016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 65(3):823–836

    Article  PubMed  Google Scholar 

  22. Zhu J, Zhuo C, Qin W et al (2014) Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia. Neuroimage Clin 7:170–176

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinformatics 14:339–351

    Article  PubMed  Google Scholar 

  24. Radwan AM, Sunaert S, Schilling K et al (2022) An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 254:119029

    Article  PubMed  Google Scholar 

  25. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

  26. Willinek WA, Schild HH (2008) Clinical advantages of 3.0 T MRI over 1.5 T. Eur J Radiol 65(1):2–14

    Article  PubMed  Google Scholar 

  27. Bender B, Heine C, Danz S et al (2014) Diffusion restriction of the optic nerve in patients with acute visual deficit. J Magn Reson Imaging 40(2):334–340

    Article  PubMed  Google Scholar 

  28. Chen HH, Hu H, Chen W et al (2020) Thyroid-associated orbitopathy: evaluating microstructural changes of extraocular muscles and optic nerves using readout-segmented echo-planar imaging-based diffusion tensor imaging. Korean J Radiol 21(3):332–340

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gupta P, Vyas S, Salan T et al (2022) Whole brain atlas-based diffusion kurtosis imaging parameters for evaluation of minimal hepatic encephalopathy. Neuroradiol J 35(1):67–76

    Article  PubMed  Google Scholar 

  30. Wu Q, Hu H, Chen W et al (2020) Morphological and microstructural brain changes in thyroid-associated ophthalmopathy: a combined voxel-based morphometry and diffusion tensor imaging study. J Endocrinol Invest 43(11):1591–1598

    Article  CAS  PubMed  Google Scholar 

  31. Takemura MY, Hori M, Yokoyama K et al (2017) Alterations of the optic pathway between unilateral and bilateral optic nerve damage in multiple sclerosis as revealed by the combined use of advanced diffusion kurtosis imaging and visual evoked potentials. Magn Reson Imaging 39:24–30

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (81801659 to Hao Hu), Jiangsu Province Hospital (the First Affiliated Hospital with Nan**g Medical University) Clinical Capacity Enhancement Project (JSPH-MC-2021-8 to **ao-Quan Xu), and Jiangsu Province Capability Improvement Project through Science, Technology and Education (JSDW202243 to Fei-Yun Wu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao-Quan Xu or Fei-Yun Wu.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Fei-Yun Wu.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

No study subjects or cohorts have been previously reported.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhou, J., Jiang, WH. et al. Diagnosis of dysthyroid optic neuropathy: combined value of orbital MRI and intracranial visual pathway diffusion kurtosis imaging. Eur Radiol (2024). https://doi.org/10.1007/s00330-024-10615-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-024-10615-9

Keywords

Navigation