Log in

Increased incidence of napkin-ring sign plaques on cervicocerebral computed tomography angiography associated with the risk of acute ischemic stroke occurrence

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Carotid atherosclerosis plays an essential role in the occurrence of ischemic stroke. This study aimed to investigate whether a larger burden of napkin-ring sign (NRS) plaques on cervicocerebral computed tomography angiography (CTA) increased the risk of acute ischemic stroke (AIS).

Methods

This retrospective, single-center, cross-sectional study enrolled patients with NRS plaques identified in the subclavian arteries, brachiocephalic trunk, carotid arterial system, and vertebrobasilar circulation on contrast-enhanced cervicocerebral CTA. Patients were divided into AIS and non-AIS groups based on imaging within 12 h of symptom onset. Univariate and multivariate logistic regression analyses were performed to determine the risk factor of AIS occurrence.

Results

A total of 202 patients (66.72 years ± 8.97, 157 men) were evaluated. Plaques with NRS in each subject of the AIS group (N = 98) were significantly more prevalent than that in the control group (N = 104) (1.96 ± 1.17 vs 1.41 ± 0.62). In the AIS group, there were substantially more NRS plaques on the ipsilateral side than contralateral side (1.55 ± 0.90 vs. 0.41 ± 0.66). NRS located on the ipsilateral side of the AIS showed an area under the receiver curve (AUC) of 0.86 to identify ischemic stroke. NRS plaque amounts were an independent risk factor for AIS occurrence (odds ratio, 1.86) after adjusting for other factors.

Conclusions

Increased incidence of napkin-ring sign plaques on cervicocerebral CTA was positively associated with AIS occurrence, which could aid in detecting asymptomatic atherosclerotic patients at high risk of AIS in routine screening or emergency settings.

Clinical relevance statement

Napkin-ring sign plaque provides an important imaging target for estimating acute ischemic stroke risk and identifying high-risk patients in routine screening or emergency settings, so that timely anti-atherosclerotic therapy can be used for prevention.

Key Points

This cross-sectional study investigated the association between high-risk carotid artery plaques and acute ischemic stroke.

Increased incidence of napkin-ring sign plaques on cervicocerebral computed tomography angiography is positively associated with acute ischemic stroke occurrence.

Napkin-ring signs help identify risky patients prone to acute ischemic stroke to facilitate prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

AIS:

Acute ischemic stroke

CTA:

Computed tomography angiography

CVD:

Cerebrovascular disease

HRP :

High-risk plaques

LAP:

Low attenuation plaque

MACE:

Major adverse cardiovascular events

NRS:

Napkin-ring sign

PR:

Positive remodeling

TCFA:

Thin-cap fibroatheroma

TIA :

Transient ischemic attack

References

  1. Meyers PM, Schumacher HC, Connolly ES Jr, Heyer EJ, Gray WA, Higashida RT (2011) Current status of endovascular stroke treatment. Circulation 123:2591–2601. https://doi.org/10.1161/circulationaha.110.971564

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feigin VL, Nichols E, Alam T et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–480. https://doi.org/10.1016/s1474-4422(18)30499-x

    Article  Google Scholar 

  3. Song P, Fang Z, Wang H et al (2020) Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health 8:e721–e729. https://doi.org/10.1016/s2214-109x(20)30117-0

    Article  PubMed  Google Scholar 

  4. Tan AP, Taneja M, Seah BH, Leong HN, Venketasubramanian N (2014) Acute free-floating carotid artery thrombus causing stroke in a young patient: unique etiology and management using endovascular approach. J Stroke Cerebrovasc Dis 23:e437–e439. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.05.005

    Article  PubMed  Google Scholar 

  5. Rothwell PM, Eliasziw M, Gutnikov SA, Warlow CP, Barnett HJ (2004) Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet 363:915–924. https://doi.org/10.1016/s0140-6736(04)15785-1

    Article  CAS  PubMed  Google Scholar 

  6. Amarenco P, Cohen A, Tzourio C et al (1994) Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med 331:1474–1479. https://doi.org/10.1056/nejm199412013312202

    Article  CAS  PubMed  Google Scholar 

  7. Guidoux C, Mazighi M, Lavallée P et al (2013) Aortic arch atheroma in transient ischemic attack patients. Atherosclerosis 231:124–128. https://doi.org/10.1016/j.atherosclerosis.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  8. Viedma-Guiard E, Guidoux C, Amarenco P, Meseguer E (2020) Aortic sources of embolism. Front Neurol 11:606663. https://doi.org/10.3389/fneur.2020.606663

    Article  PubMed  Google Scholar 

  9. Freilinger TM, Schindler A, Schmidt C et al (2012) Prevalence of nonstenosing, complicated atherosclerotic plaques in cryptogenic stroke. JACC Cardiovasc Imaging 5:397–405. https://doi.org/10.1016/j.jcmg.2012.01.012

    Article  PubMed  Google Scholar 

  10. Gupta A, Gialdini G, Lerario MP et al (2015) Magnetic resonance angiography detection of abnormal carotid artery plaque in patients with cryptogenic stroke. J Am Heart Assoc 4:e002012. https://doi.org/10.1161/jaha.115.002012

    Article  PubMed  PubMed Central  Google Scholar 

  11. Inzitari D, Eliasziw M, Gates P et al (2000) The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 342:1693–1700. https://doi.org/10.1056/nejm200006083422302

    Article  CAS  PubMed  Google Scholar 

  12. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108:1664–1672. https://doi.org/10.1161/01.Cir.0000087480.94275.97

    Article  PubMed  Google Scholar 

  13. Saba L, Saam T, Jäger HR et al (2019) Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol 18:559–572. https://doi.org/10.1016/s1474-4422(19)30035-3

    Article  PubMed  Google Scholar 

  14. Baradaran H, Gupta A (2020) Carotid Vessel Wall Imaging on CTA. AJNR Am J Neuroradiol 41:380–386. https://doi.org/10.3174/ajnr.A6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ (2017) Embolic stroke of undetermined source: a systematic review and clinical update. Stroke 48:867–872. https://doi.org/10.1161/strokeaha.116.016414

    Article  PubMed  Google Scholar 

  16. Goyal M, Singh N, Marko M et al (2020) Embolic stroke of undetermined source and symptomatic nonstenotic carotid disease. Stroke 51:1321–1325. https://doi.org/10.1161/strokeaha.119.028853

    Article  CAS  PubMed  Google Scholar 

  17. Tao L, Li XQ, Hou XW et al (2021) Intracranial atherosclerotic plaque as a potential cause of embolic stroke of undetermined source. J Am Coll Cardiol 77:680–691. https://doi.org/10.1016/j.jacc.2020.12.015

    Article  PubMed  Google Scholar 

  18. Saba L, Antignani PL, Gupta A et al (2022) International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: from basic strategies to advanced approaches. Atherosclerosis 354:23–40. https://doi.org/10.1016/j.atherosclerosis.2022.06.1014

    Article  CAS  PubMed  Google Scholar 

  19. Saba L, Yuan C, Hatsukami TS et al (2018) Carotid artery wall imaging: perspective and guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 39:E9-e31. https://doi.org/10.3174/ajnr.A5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boussel L, Herigault G, de la Vega A, Nonent M, Douek PC, Serfaty JM (2006) Swallowing, arterial pulsation, and breathing induce motion artifacts in carotid artery MRI. J Magn Reson Imaging 23:413–415. https://doi.org/10.1002/jmri.20525

    Article  PubMed  Google Scholar 

  21. Kim JJ, Dillon WP, Glastonbury CM, Provenzale JM, Wintermark M (2010) Sixty-four-section multidetector CT angiography of carotid arteries: a systematic analysis of image quality and artifacts. AJNR Am J Neuroradiol 31:91–99. https://doi.org/10.3174/ajnr.A1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amin HP, Madsen TE, Bravata DM et al (2023) Diagnosis, workup, risk reduction of transient ischemic attack in the emergency department setting: a scientific statement from the American Heart Association. Stroke. https://doi.org/10.1161/str.0000000000000418

  23. Oliver TB, Lammie GA, Wright AR et al (1999) Atherosclerotic plaque at the carotid bifurcation: CT angiographic appearance with histopathologic correlation. AJNR Am J Neuroradiol 20:897–901

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chrencik MT, Khan AA, Luther L et al (2019) Quantitative assessment of carotid plaque morphology (geometry and tissue composition) using computed tomography angiography. J Vasc Surg 70:858–868. https://doi.org/10.1016/j.jvs.2018.11.050

    Article  PubMed  PubMed Central  Google Scholar 

  25. Varrassi M, Sferra R, Gravina GL et al (2019) Carotid artery plaque characterization with a wide-detector computed tomography using a dedicated post-processing 3D analysis: comparison with histology. Radiol Med 124:795–803. https://doi.org/10.1007/s11547-019-01026-8

    Article  PubMed  Google Scholar 

  26. Tanaka A, Shimada K, Yoshida K et al (2008) Non-invasive assessment of plaque rupture by 64-slice multidetector computed tomography–comparison with intravascular ultrasound. Circ J 72:1276–1281. https://doi.org/10.1253/circj.72.1276

    Article  PubMed  Google Scholar 

  27. Voros S, Rinehart S, Qian Z et al (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4:537–548. https://doi.org/10.1016/j.jcmg.2011.03.006

    Article  PubMed  Google Scholar 

  28. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H (2010) The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging 3:440–444. https://doi.org/10.1016/j.jcmg.2010.02.003

    Article  PubMed  Google Scholar 

  29. Senoner T, Plank F, Barbieri F et al (2020) Added value of high-risk plaque criteria by coronary CTA for prediction of long-term outcomes. Atherosclerosis 300:26–33. https://doi.org/10.1016/j.atherosclerosis.2020.03.019

    Article  CAS  PubMed  Google Scholar 

  30. Otsuka K, Fukuda S, Tanaka A et al (2013) Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 6:448–457. https://doi.org/10.1016/j.jcmg.2012.09.016

    Article  PubMed  Google Scholar 

  31. Feuchtner G, Kerber J, Burghard P et al (2017) The high-risk criteria low-attenuation plaque <60 HU and the napkin-ring sign are the most powerful predictors of MACE: a long-term follow-up study. Eur Heart J Cardiovasc Imaging 18:772–779. https://doi.org/10.1093/ehjci/jew167

    Article  PubMed  Google Scholar 

  32. Yoon SH, Kim E, Jeon Y et al (2020) Prognostic value of coronary CT angiography for predicting poor cardiac outcome in stroke patients without known cardiac disease or chest pain: the Assessment of Coronary Artery Disease in Stroke Patients Study. Korean J Radiol 21:1055–1064. https://doi.org/10.3348/kjr.2020.0103

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kashiwagi M, Tanaka A, Shimada K et al (2013) Distribution, frequency and clinical implications of napkin-ring sign assessed by multidetector computed tomography. J Cardiol 61:399–403. https://doi.org/10.1016/j.jjcc.2013.01.004

    Article  PubMed  Google Scholar 

  34. Maurovich-Horvat P, Schlett CL, Alkadhi H et al (2012) The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 5:1243–1252. https://doi.org/10.1016/j.jcmg.2012.03.019

    Article  PubMed  Google Scholar 

  35. Jang IK, Tearney GJ, MacNeill B et al (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555. https://doi.org/10.1161/01.Cir.0000159354.43778.69

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ito T, Terashima M, Kaneda H et al (2011) Comparison of in vivo assessment of vulnerable plaque by 64-slice multislice computed tomography versus optical coherence tomography. Am J Cardiol 107:1270–1277. https://doi.org/10.1016/j.amjcard.2010.12.036

    Article  PubMed  Google Scholar 

  37. Dai Z, Xu G (2017) Restenosis after carotid artery stenting. Vascular 25:576–586. https://doi.org/10.1177/1708538117706273

    Article  PubMed  Google Scholar 

  38. Bonati LH, Ederle J, McCabe DJ et al (2009) Long-term risk of carotid restenosis in patients randomly assigned to endovascular treatment or endarterectomy in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): long-term follow-up of a randomised trial. Lancet Neurol 8:908–917. https://doi.org/10.1016/s1474-4422(09)70227-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mulder MJ, van Oostenbrugge RJ, Dippel DW (2015) Letter by Mulder et al regarding article, “2015 AHA/ASA Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association.” Stroke 46:e235. https://doi.org/10.1161/strokeaha.115.010913

    Article  PubMed  Google Scholar 

  40. Helgason CM, Wolf PA (1997) American Heart Association Prevention Conference IV: prevention and rehabilitation of stroke: executive summary. Circulation 96:701–707. https://doi.org/10.1161/01.cir.96.2.701

    Article  CAS  PubMed  Google Scholar 

  41. Ma N, Jiang WJ, Lou X et al (2010) Arterial remodeling of advanced basilar atherosclerosis: a 3-Tesla MRI study. Neurology 75:253–258. https://doi.org/10.1212/WNL.0b013e3181e8e714

    Article  CAS  PubMed  Google Scholar 

  42. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47:C13-18. https://doi.org/10.1016/j.jacc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  43. Cheruvu PK, Finn AV, Gardner C et al (2007) Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol 50:940–949. https://doi.org/10.1016/j.jacc.2007.04.086

    Article  PubMed  Google Scholar 

  44. Pflederer T, Marwan M, Schepis T et al (2010) Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis 211:437–444. https://doi.org/10.1016/j.atherosclerosis.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  45. Kashiwagi M, Tanaka A, Kitabata H et al (2009) Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2:1412–1419. https://doi.org/10.1016/j.jcmg.2009.09.012

    Article  PubMed  Google Scholar 

  46. Gössl M, Versari D, Hildebrandt HA et al (2010) Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. JACC Cardiovasc Imaging 3:32–40. https://doi.org/10.1016/j.jcmg.2009.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NP (2007) Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg 45:155–159. https://doi.org/10.1016/j.jvs.2006.08.072

    Article  PubMed  Google Scholar 

  48. Seifarth H, Schlett CL, Nakano M et al (2012) Histopathological correlates of the napkin-ring sign plaque in coronary CT angiography. Atherosclerosis 224:90–96. https://doi.org/10.1016/j.atherosclerosis.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  49. Mosleh W, Adib K, Natdanai P et al (2017) High-risk carotid plaques identified by CT-angiogram can predict acute myocardial infarction. Int J Cardiovasc Imaging 33:561–568. https://doi.org/10.1007/s10554-016-1019-5

    Article  PubMed  Google Scholar 

  50. Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54:49–57. https://doi.org/10.1016/j.jacc.2009.02.068

    Article  PubMed  Google Scholar 

  51. Nakanishi K, Fukuda S, Shimada K et al (2012) Non-obstructive low attenuation coronary plaque predicts three-year acute coronary syndrome events in patients with hypertension: multidetector computed tomographic study. J Cardiol 59:167–175. https://doi.org/10.1016/j.jjcc.2011.11.010

    Article  PubMed  Google Scholar 

  52. Ino Y, Kubo T, Tanaka A et al (2011) Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv 4:76–82. https://doi.org/10.1016/j.jcin.2010.09.022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the patients who agreed to participate in this study.

Funding

This work is supported by the Key R&D program of Hainan Province (ZDYF2019169), Natural Science Foundation of Hainan Province (822RC738), and Sanya University Talent Introduction Project (USYRC22-05).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Fan Zhang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Fan Zhang.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained. This study has been approved by our institutional Medical Ethical Committee of Hainan Hospital of PLA General Hospital.

Study subjects or cohorts overlap

Study subjects or cohorts have not been previously reported.

Methodology

retrospective

cross-sectional study

performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**g** Wu and Ying Zou contributed to the work equally and could be regarded as co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zou, Y., Meng, X. et al. Increased incidence of napkin-ring sign plaques on cervicocerebral computed tomography angiography associated with the risk of acute ischemic stroke occurrence. Eur Radiol 34, 4438–4447 (2024). https://doi.org/10.1007/s00330-023-10404-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-10404-w

Keywords

Navigation