Log in

Combined correction of recovery effect and motion blur for SUV quantification of solitary pulmonary nodules in FDG PET/CT

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

We evaluate a fully data-driven method for the combined recovery and motion blur correction of small solitary pulmonary nodules (SPNs) in F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT).

Methods

The SPN was segmented in the low-dose CT using a variable Hounsfield threshold and morphological constraints. The combined effect of limited spatial resolution and motion blur in the SPN’s PET image was then modelled by an effective Gaussian point-spread function (psf). Both isotropic and non-isotropic psfs were used. To validate the method, PET/CT measurements of the NEMA/IEC spheres phantom were performed. The method was applied to 50 unselected SPNs ≤30 mm from routine patient care.

Results

Recovery of standardised uptake value (SUV) in the phantom image was significantly improved by combined recovery and motion blur correction compared with recovery-only correction, particularly with the non-isotropic model (residual average error 10%). In the patient images, automated segmentation and fit of the effective psf worked properly in all cases. Volume-equivalent diameter ranged from 4.9 to 27.8 mm. Uncorrected maximum SUV ranged from 0.9 to 13.3. Compared with recovery-only correction, combined correction with the non-isotropic model resulted in a ‘relevant’ (≥30%) SUV increase in 47 SPNs (94%).

Conclusions

Correction of both recovery and motion blur is mandatory for accurate SUV quantification of SPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alberts WM (2007) Diagnosis and management of lung cancer executive summary: ACCP evidence-based clinical practice guidelines, 2nd edn. Chest 132:1S–19S

    Article  PubMed  Google Scholar 

  2. Mayor S (2005) NICE issues guidance for diagnosis and treatment of lung cancer. BMJ 330:439

    Article  PubMed  Google Scholar 

  3. National Collaborating Centre for Acute Care at The Royal College of Surgeons of England (2005) The diagnosis and treatment of lung cancer: methods, evidence and guidance. National Institute for Clinical Excellence, London

  4. Kessler RM, Ellis JR Jr, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8:514–522

    Article  CAS  PubMed  Google Scholar 

  5. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945

    Article  PubMed  Google Scholar 

  6. Hickeson M, Yun M, Matthies A, Zhuang H, Adam LE, Lacorte L, Alavi A (2002) Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET. Eur J Nucl Med Mol Imaging 29:1639–1647

    Article  PubMed  Google Scholar 

  7. Avril N, Dose J, Janicke F, Bense S, Ziegler S, Laubenbacher C, Romer W, Pache H, Herz M, Allgayer B, Nathrath W, Graeff H, Schwaiger M (1996) Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J Clin Oncol 14:1848–1857

    CAS  PubMed  Google Scholar 

  8. Avril N, Bense S, Ziegler SI, Dose J, Weber W, Laubenbacher C, Romer W, Janicke F, Schwaiger M (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38:1186–1191

    CAS  PubMed  Google Scholar 

  9. Goerres GW, Kamel E, Seifert B, Burger C, Buck A, Hany TF, Von Schulthess GK (2002) Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med 43:1469–1475

    PubMed  Google Scholar 

  10. Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, Yorke ED, Schoder H, Hsiao W, Squire OD, Vernon P, Ashman JB, Mostafavi H, Larson SM, Humm JL (2004) The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 45:1287–1292

    PubMed  Google Scholar 

  11. Mageras GS, Pevsner A, Yorke ED, Rosenzweig KE, Ford EC, Hertanto A, Larson SM, Lovelock DM, Erdi YE, Nehmeh SA, Humm JL, Ling CC (2004) Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys 60:933–941

    Article  PubMed  Google Scholar 

  12. Kawano T, Ohtake E, Inoue T (2008) Deep-inspiration breath-hold PET/CT of lung cancer: maximum standardized uptake value analysis of 108 patients. J Nucl Med 49:1223–1231

    Article  PubMed  Google Scholar 

  13. de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, Boerman OC, Oyen WJ (2007) Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 55:79–87

    Article  PubMed  Google Scholar 

  14. Lowe VJ, Fletcher JW, Gobar L, Lawson M, Kirchner P, Valk P, Karis J, Hubner K, Delbeke D, Heiberg EV, Patz EF, Coleman RE (1998) Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 16:1075–1084

    CAS  PubMed  Google Scholar 

  15. Meirelles GS, Erdi YE, Nehmeh SA, Squire OD, Larson SM, Humm JL, Schoder H (2007) Deep-inspiration breath-hold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med 48:712–719

    Article  PubMed  Google Scholar 

  16. Nehmeh SA, Erdi YE, Meirelles GS, Squire O, Larson SM, Humm JL, Schoder H (2007) Deep-inspiration breath-hold PET/CT of the thorax. J Nucl Med 48:22–26

    PubMed  Google Scholar 

  17. Dawood M, Buther F, Jiang X, Schafers KP (2008) Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 27:1164–1175

    Article  PubMed  Google Scholar 

  18. Park SJ, Ionascu D, Killoran J, Mamede M, Gerbaudo VH, Chin L, Berbeco R (2008) Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 53:3661–3679

    Article  PubMed  Google Scholar 

  19. Nehmeh SA, Erdi YE (2008) Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 38:167–176

    Article  PubMed  Google Scholar 

  20. Wiemker R, Paulus T, Kabus S, Bülow T, Apostolova I, Buchert R, Klutmann S (2008) Combined motion blur and partial volume correction for computer aided diagnosis of pulmonary nodules in PET/CT. Int J CARS 3:105–113

    Article  Google Scholar 

  21. Nahmias C, Wahl LM (2008) Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 49:1804–1808

    Article  PubMed  Google Scholar 

  22. International Electrotechnical Commission (1998) International Standard: radionuclide imaging devices—characteristics and test conditions. Part 1: Positron emission tomographs. International Electrotechnical Commission (IEC), Geneva

  23. National Electrical Manufacturers Association (2001) Performance measurements of scintillation cameras. National Electrical Manufacturers Association (NEMA), Washington D.C.

  24. Egger M (2005) Design considerations for PET/CT tomographs. Nuklearmedizin 44(Suppl 1):S63–S64

    PubMed  Google Scholar 

  25. Hu Z, Wang W, Gualtieri EE, Hsieh YL, Karp JS, Matej S, Parma MJ, Tung CH, Walsh ES, Werner M, Gagnon D (2007) An LOR-based fully-3D PET image reconstruction using a blob-basis function. IEEE Nuclear Science Symposium Conference Record 6:4415–4418

    Google Scholar 

  26. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596

    PubMed  Google Scholar 

  27. Kim SC, Machac J, Krynyckyi BR, Knesaurek K, Krellenstein D, Schultz B, Gribetz A, DePalo L, Teirstein A, Kim CK (2008) Fluoro-deoxy-glucose positron emission tomography for evaluation of indeterminate lung nodules: assigning a probability of malignancy may be preferable to binary readings. Ann Nucl Med 22:165–170

    Article  PubMed  Google Scholar 

  28. Nie Y, Li Q, Li F, Pu Y, Appelbaum D, Doi K (2006) Integrating PET and CT information to improve diagnostic accuracy for lung nodules: a semiautomatic computer-aided method. J Nucl Med 47:1075–1080

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivayla Apostolova.

Additional information

I. Apostolova and R. Wiemker contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolova, I., Wiemker, R., Paulus, T. et al. Combined correction of recovery effect and motion blur for SUV quantification of solitary pulmonary nodules in FDG PET/CT. Eur Radiol 20, 1868–1877 (2010). https://doi.org/10.1007/s00330-010-1747-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1747-1

Keywords

Navigation