Log in

Bathymetric distributions of notothenioid fishes

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

There has been no comprehensive study of the bathymetry of notothenioid fishes. Therefore, I analyzed minimum and maximum depths and depth ranges for 128 of 142 species that collectively range from 0 to ≈3000 m. Means (and medians) for maximum depths are 176 m (75 m) for non-Antarctic, 511 m (360 m) for sub-Antarctic, and 963 m (899 m) for Antarctic species; medians are significantly different. Means (and medians) for depth ranges for the three groups are 140 (55 m), 470 (345 m), and 727 m (714 m), respectively, with significantly different medians. The mean maximum depths for the Cryonotothenioidea are: Nototheniidae—525 m, Harpagiferidae—88 m, Artedidraconidae—906 m, Bathydraconidae—1165 m, and Channichthyidae—910 m. If five species of Bathydraco, with a mean of 2098 m are excluded, the mean for the Bathydraconidae is 741 m. With the exceptions of the harpagiferids and Bathydraco, there is overlap of the 95% confidence intervals for the means of other families. Thirteen Antarctic and sub-Antarctic species with maximum depths and/or depth ranges ≥1500 m are especially deep-living: four nototheniids, four species of Bathydraco, three species of Pogonophryne, and two channichthyids. The most common depth range is 0–50 m for non-Antarctic, 200–400 m for sub-Antarctic and 600–800 m for Antarctic species. Three species have depth ranges >2000 m. Species diversity peaks at 50 m for non-Antarctic, 100 m for sub-Antarctic, and 500 m for Antarctic species. Notothenioids are not eurybathic compared with older deep-sea taxa but are eurybathic relative to marine percomorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghmich A, Taboada S, Toll L, Ballesteros M (2016) First assessment of the rocky intertidal communities of Fildes Bay, King George Island (South Shetland Islands, Antarctica). Polar Biol 39:189–198

    Article  Google Scholar 

  • Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Nat Acad Sci USA 106:13410–13414. doi:10.1073/pnas.0811087106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allcock AL, Strugnell JM (2012) Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol Evol 27:520–528

    Article  PubMed  Google Scholar 

  • Anderson ME (1990) Zoarcidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 256–276

    Google Scholar 

  • Anderson JB (1999) Antarctic marine geology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Anderson JB, Shipp SS, Lowe AL, Wellner JS, Mosola AB (2002) The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat Sci Rev 21:49–70

    Article  Google Scholar 

  • Anderson JB, Conway H et al (2014) Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat Sci Rev 100:31–54. doi:10.1016/j.quascirev.2013.08.020

    Article  Google Scholar 

  • Andriashev AP (1965) A general review of the Antarctic fish fauna. In: van Oye P, van Mieghem J (eds) Biogeography and ecology in Antarctica, Monographiae Biologicae, vol XV. Junk, The Hague, pp 491–550

    Chapter  Google Scholar 

  • Andriashev AP (1977) Some additions to schemes of the vertical zonation of marine bottom fauna. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, pp 351–360

    Google Scholar 

  • Andriashev AP (1987) A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm B (eds) Fifth congress of European ichthyologists, proceedings, Stockholm, 1985. Swedish Museum of Natural History, Stockholm, pp 357–372

    Google Scholar 

  • Andriashev AP (2003) Liparid fishes (Liparidae, Scorpaeniformes) of the Southern Ocean and adjacent waters. Biological results of the Russian Antarctic expeditions, Vol 9. Explorations of the Fauna of the Seas, Vol 53(61). Russian Academy of Sciences, Zoological Institute, St. Petersburg

  • Angel MV (1997) What is the deep-sea? In: Randall DJ, Farrell AP (eds) Deep-sea fishes, vol 16. Fish Physiology. Academic Press, San Diego, pp 1–41

    Chapter  Google Scholar 

  • Balushkin AV (2016) Systematics of the Antarctic thornfishes of the genus Bovichtus (Bovichtidae) of the seamounts of the New Zealand Basin. J Ichthyol 56:499–507

    Google Scholar 

  • Balushkin AV, Voskoboinikova OS (2011) Antarctic Dragonfishes (Bathydraconidae). Explorations of the fauna of the seas, Vol. 65(73). Nauka, St. Petersburg

  • Barnes DKA, Conlan KE (2007) Disturbance, colonization and development of Antarctic benthic communities. Phil Trans R Soc B 362:11–38

    Article  PubMed  Google Scholar 

  • Barnes DKA, Souster T (2011) Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Change 1:365–368. doi:10.1038/nclimate1232

    Article  Google Scholar 

  • Barnes DKA, Sands CJ, Hogg OT, Robinson BJO, Downey RV, Smith JA (2016) Biodiversity signature of the last glacial maximum at South Georgia, Southern Ocean. J Biogeogr 43:2391–2399. doi:10.1111/jbi.12855

    Article  Google Scholar 

  • Burchett MS (1983) Morphology and morphometry of the Antarctic nototheniid Notothenia rossii marmorata. Br Antarct Surv Bull 58:71–81

    Google Scholar 

  • Causse R, Ozouf-Costaz C, Koubbi P, Lamy D, Eléaume M, Dettaï A, Duhamel G, Busson F, Pruvost P, Post A, Beaman RJ, Riddle MJ (2011) Demersal ichthyofaunal shelf communities from the Dumont d’Urville Sea (East Antarctica). Polar Sci 5:272–285

    Article  Google Scholar 

  • Chiu TS, Markle DF (1990) Muraenolepididae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 179–182

    Google Scholar 

  • Collins MA, Brickle P, Brown J, Belchier M (2010) The Patagonian toothfish: biology, ecology and fishery. In: Lesser M (ed) Advances in marine biology, vol 58. Elsevier Academic Press, San Diego, pp 227–300. doi:10.1016/s0065.2881(10)58004.0

    Google Scholar 

  • Colombo M, Damerau M, Hanel R, Salzburger W, Matschiner M (2015) Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes. J Evol Biol 28:376–394. doi:10.1111/jeb.12570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayton PK, Robilliard GA, DeVries AL (1969) Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science 163:273–274

    Article  CAS  PubMed  Google Scholar 

  • Dettai A, Berkani M, Lautredou A-C, Couloux A, Lecointre G, Ozouf-Costaz C, Gallut C (2012) Tracking the elusive monophyly of nototheniid fishes (Teleostei) with multiple mitochondrial and nuclear markers. Mar Genom 8:49–58

    Article  CAS  Google Scholar 

  • DeWitt HH (1966) A revision of the Antarctic and southern genus Notothenia (Pisces, Nototheniidae). PhD Dissertation, Stanford University, Palo Alto

  • DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic map folio series, Folio 15. American Geographical Society, New York, pp 1–10

    Google Scholar 

  • DeWitt HH (1985) Reports on fishes of the University of Southern California Antarctic Research Program, 1962–1968. 1. A review of the genus Bathydraco Günther (family Bathydraconidae). Cybium 9:295–314

    Google Scholar 

  • DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331

    Google Scholar 

  • Dornburg A, Eytan RI, Federman S, Pennington JN, Stewart AL, Jones CD, Near TJ (2016a) Molecular data support the existence of two species of the Antarctic fish genus Cryodraco (Channichthyidae). Polar Biol 39:1369–1379. doi:10.1007/s00300-015-1859-9

    Article  Google Scholar 

  • Dornburg A, Federman S, Eytan RI, Near TJ (2016b) Cryptic species diversity in sub-Antarctic islands: a case study of Lepidonotothen. Mol Phylogen Evol 104:32–43. doi:10.1016/j.ympev.2016.07.013

    Article  Google Scholar 

  • Drazen JC, Haedrich RL (2012) A continuum of life histories in deep-sea demersal fishes. Deep-Sea Res I 61:34–42

    Article  Google Scholar 

  • Duhamel G (1981) Caracteristiques biologiques des principales especes de poissons du plateau continental des Iles Kerguelen. Cybium, 3e Sér 5:19–32

  • Duhamel G, Gasco N, Davaine P (2005) Poissons des îles Kerguelen et Crozet. Guide régional de l’océan Austral. Muséum national d’Histoire naturelle, Paris

    Google Scholar 

  • Eakin RR (1990) Artedidraconidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 332–356

    Google Scholar 

  • Eakin RR, Eastman JT, Near TJ (2009) A new species and a molecular phylogenetic analysis of the Antarctic fish genus Pogonophryne (Notothenioidei: Artedidraconidae). Copeia 4:705–713

    Article  Google Scholar 

  • Eastman JT (1988) Lipid storage systems and the biology of two neutrally buoyant Antarctic notothenioid fishes. Comp Biochem Physiol 90B:529–537

    CAS  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Eastman JT, Eakin RR (2000) An updated species list for notothenioid fish (Perciformes; Notothenioidei), with comments on Antarctic species. Arch Fish Mar Res 48:11–20

    Google Scholar 

  • Eastman JT, Lannoo MJ (2003a) Anatomy and histology of the brain and sense organs of the Antarctic plunderfish Dolloidraco longedorsalis (Perciformes: Notothenioidei: Artedidraconidae), with comments on the brain morphology of other artedidraconids and closely related harpagiferids. J Morphol 255:358–377

    Article  PubMed  Google Scholar 

  • Eastman JT, Lannoo MJ (2003b) Diversification of brain and sense organ morphology in Antarctic dragonfishes (Perciformes: Notothenioidei: Bathydraconidae). J Morphol 258:130–150

    Article  PubMed  Google Scholar 

  • Eastman JT, Lannoo MJ (2011) Divergence of brain and retinal anatomy and histology in pelagic Antarctic notothenioid fishes of the sister taxa Dissostichus and Pleuragramma. J Morphol 272:419–441

    Article  PubMed  Google Scholar 

  • Eastman J, Amsler MO, Aronson RB, Thatje S, McClintock JR, Vos SC, Kaeli JW, Singh H, La Mesa M (2013) Photographic survey of benthos provides insights into the Antarctic fish fauna from the Marguerite Bay slope and the Amundsen Sea. Antarct Sci 25:31–43

    Article  Google Scholar 

  • Fuiman LA, Davis RW, Williams TM (2002) Behavior of midwater fishes under Antarctic ice: observations by a predator. Mar Biol 140:815–822

    Article  Google Scholar 

  • Gaither MR, Violi B, Gray HWI, Neat F, Drazen JC, Grubbs RD, Roa-Varón A, Sutton T, Hoelzel AR (2016) Depth as a driver of evolution in the deep sea: insights from the grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Mol Phylogen Evol 104:73–82

    Article  Google Scholar 

  • Galeotti S, DeConto R et al (2016) Antarctic Ice Sheet variability across the Eocene–Oligocene boundary climate transition. Science 352:76–80. doi:10.1126/science.aab0669

    Article  CAS  PubMed  Google Scholar 

  • Gon O (1990) Bathydraconidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 364–380

    Google Scholar 

  • Gon O, Heemstra P (eds) (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown

    Google Scholar 

  • Greenacre M (2016) Data reporting and visualization in ecology. Polar Biol 30:2189–2205. doi:10.1007/s00300-016-2047-2

    Article  Google Scholar 

  • Gregory S, Collins MA, Belchier M (2017) Demersal fish communities of the shelf and slope of South Georgia and Shag Rocks (Southern Ocean). Polar Biol 40:107–121. doi:10.1007/s00300-016-1929-7

    Article  Google Scholar 

  • Griffiths HJ (2010) Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean? PLoS ONE 5(8):e11683. doi:10.1371/journal.pone.0011683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths HJ, Waller CL (2016) The first comprehensive description of the biodiversity and biogeography of Antarctic and Sub-Antarctic intertidal communities. J Biogeogr 43:1143–1155. doi:10.1111/jbi.12708

    Article  Google Scholar 

  • Griffiths HJ, Van de Putte A, Danis B (2014) Data distribution: patterns and implications. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C et al (eds) Biogeographic atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 16–26

    Google Scholar 

  • Haedrich RL (1996) Deep-water fishes: evolution and adaptation in the earth’s largest living space. J Fish Biol 49(Suppl A):40–53

    Article  Google Scholar 

  • Haedrich RL (1997) Distribution and population ecology. In: Randall DJ, Farrell AP (eds) Deep-sea fishes, vol 16. Fish physiology. Academic Press, San Diego, pp 79–114

    Chapter  Google Scholar 

  • Hanchet S, Dunn A, Parker S, Horn P, Stevens D, Mormede S (2015) The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761:397–414. doi:10.1007/s10750-015-2435-6

    Article  Google Scholar 

  • Hüne M, Vega R (2016) Feeding habits in two sympatric species of Notothenioidei, Patagonotothen cornucola and Harpagifer bispinus, in the Chilean Patagonian channels and fjords. Polar Biol 39:2253–2262. doi:10.1007/s00300-016-1892-3

    Article  Google Scholar 

  • Huybrechts P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during glacial cycles. Quat Sci Rev 21:203–231

    Article  Google Scholar 

  • Ingram T (2011) Speciation along a depth gradient in a marine adaptive radiation. Proc R Soc B 278:613–618

    Article  PubMed  Google Scholar 

  • Ivany LC, Lohmann KC, Hasiuk F, Blake DB, Glass A, Aronson RB, Moody RM (2008) Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geol Soc Am Bull 120:659–678. doi:10.1130/b26269.1

    Article  CAS  Google Scholar 

  • Iwamoto T (1990) Macrouridae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 192–206

    Google Scholar 

  • Janko K, Lecointre G, DeVries A, Couloux A, Cruaud C, Marshall C (2007) Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?—inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol Biol 7:220. doi:10.1186/1471-2148-7-220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janko K, Marshall C, Musilová Z, Van Houdt J, Couloux A, Cruaud C, Lecointre G (2011) Multilocus analyses of an Antarctic fish species flock (Teleostei, Notothenioidei, Trematominae): phylogenetic approach and test of the early-radiation event. Mol Phylogen Evol 60:305–316

    Article  Google Scholar 

  • Jurajda P, Roche K, Sedláček L, Všetičková L (2016) Assemblage characteristics and diet of fish in the shallow coastal waters of James Ross Island, Antarctica. Polar Biol 39:2299–2309. doi:10.1007/s00300-016-1896-z

    Article  Google Scholar 

  • Kašparová E, Van de Putte AP, Marshall C, Janko K (2015) Lifestyle and ice: the relationship between ecological specialization and response to Pleistocene climate change. PLoS ONE 10(11):e0138766. doi:10.1371/journal.pone.0138766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klingenberg CP, Ekau W (1996) A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biol J Linn Soc 59:143–177

    Article  Google Scholar 

  • Knorr G, Lohmann G (2014) Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nat Geosci 7:376–381. doi:10.1038/ngeo2119

    Article  CAS  Google Scholar 

  • Kock K-H (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I. Polar Biol 28:862–895

    Article  Google Scholar 

  • Kompowski A (1980) Studies on juvenile Chaenocephalus aceratus (Lönnberg, 1906) (Pisces, Chaenichthyidae) from off South Georgia. Acta Ichthyol Piscat 10:45–53

    Article  Google Scholar 

  • La Mesa M, Vacchi M, Iwami T, Eastman JT (2002) Taxonomic studies of the Antarctic icefish genus Cryodraco Dollo, 1900 (Notothenioidei: Channichthyidae). Polar Biol 25:384–390

    Google Scholar 

  • Lautrédou A-C, Hisinger DD, Gallut C, Cheng C-HC, Berkani M, Ozouf-Costaz C, Cruaud C, Lecointre G, Dettai A (2012) Phylogenetic footprints of an Antarctic radiation: the Trematominae (Notothenioidei, Teleostei). Mol Phylogen Evol 65:87–101

    Article  Google Scholar 

  • Lecointre G, Gallut C, Bonillo C, Couloux A, Ozouf-Costaz C, Dettaï A (2011) The Antarctic fish genus Artedidraco is paraphyletic (Teleostei, Notothenioidei, Artedidraconidae). Polar Biol 34:1135–1145

    Article  Google Scholar 

  • Lecointre G, Améziane N, Boisselier M-C et al (2013) Is the species flock concept operational? The Antarctic shelf case. PLoS ONE 8(8):e68787. doi:10.1371/journal.pone.0068787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linley TD, Gerringer ME, Yancey PH, Drazen JC, Weinstock CL, Jamieson AJ (2016) Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep-Sea Res I 114:99–110. doi:10.1016/j.dsr.2016.05.003

    Article  Google Scholar 

  • Loeb VJ, Kellermann AK, Koubbi P, North AW, White MG (1993) Antarctic larval fish assemblages: a review. Bull Mar Sci 53:416–449

    Google Scholar 

  • Love MS, Yoklavich M, Thorsteinson L (2002) The rockfishes of the Northeast Pacific. University of California Press, Berkeley

    Google Scholar 

  • Marshall NB (1971) Explorations in the life of fishes. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Marshall NB (1979) Deep-sea biology: developments and perspectives. Garland STPM, New York

    Google Scholar 

  • Matallanas J, Olaso I (2007) Fishes of the Bellingshausen sea and Peter I Island. Polar Biol 30:333–341

    Article  Google Scholar 

  • Matschiner M, Hanel R, Salzburger W (2011) On the origin and trigger of the notothenioid adaptive radiation. PLoS ONE 6(4):e18911. doi:10.1371/journal.pone.0018911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matschiner M, Colombo M, Damerau M, Ceballos S, Hanel R, Salzburger W (2015) The adaptive radiation of notothenioid fishes in the waters of Antarctica. In: Riesch R, Tobler M, Plath M (eds) Extremeophile fishes. Springer, Switzerland, pp 35–57

    Google Scholar 

  • Merrett NR, Haedrich RL (1997) Deep-sea demersal fish and fisheries. Chapman & Hall, London

    Google Scholar 

  • Miller RG (1993) History and atlas of the fishes of the antarctic ocean. Foresta Institute for Ocean and Mountain Studies, Carson City

    Google Scholar 

  • Naish T, Powell R, Levy R et al (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–328. doi:10.1038/nature07867

    Article  CAS  PubMed  Google Scholar 

  • Nast F, Kock K-H, Sahrhage D, Stein M, Tiedtke JE (1988) Hydrography, krill and fish and their possible relationships around Elephant Island. In: Sahrhage D (ed) Antarctic ocean and resources variability. Springer, Berlin, pp 183–198

    Chapter  Google Scholar 

  • Near TJ, Russo SE, Jones CD, DeVries AL (2003) Ontogenetic shift in buoyancy and habitat in the Antarctic toothfish, Dissostichus mawsoni (Perciformes: Nototheniidae). Polar Biol 26:124–128

    Google Scholar 

  • Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, Zane L, Fernández DA, Jones CD (2012) Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Nat Acad Sci USA 109:3434–3439. doi:10.1073/pnas.1115169109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price SA, Burbrink FT, Friedman M, Wainwright PC (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci USA 110:12738–12743. doi:10.1073/pnas.1304661110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Near TJ, Dornburg A, Harrington RC, Oliveira C, Pietsch TW, Thacker CE, Satoh TP, Katayama E, Wainwright PC, Eastman JT, Beaulieu JM (2015) Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol Biol. doi:10.1186/s12862-015-0362-9

    Google Scholar 

  • Norman JR (1938) Coast fishes. Part III. The Antarctic zone. Discov Rep 18:1–104

    Article  Google Scholar 

  • Nybelin O (1947) Antarctic fishes. Sci Results Norweg Antarct Exped 1927-1928 et sqq No 26:1–76

  • Pearcy WG, Stein DL, Carney RS (1982) The deep-sea benthic fish fauna of the northeastern Pacific Ocean on Cascadia and Tufts abyssal plains and adjoining continental slopes. Biol Oceanogr 1:375–428

    Google Scholar 

  • Pekar SF, DeConto RM (2006) High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 231:101–109. doi:10.1016/j.palaeo.2005.07.027

    Article  Google Scholar 

  • Petrov AF (2011a) New data on depths inhabited by striped-eyed rock cod Lepidonotothen kempi (Norman) (Nototheniidae) off Bouvet Island. J Ichthyol 51:683–685

    Article  Google Scholar 

  • Petrov AF (2011b) New data on the diet of deep-sea icefish Chionobathyscus dewitti (Channichthyidae) in the Ross Sea in 2010. J Ichthyol 51:692–694

    Article  Google Scholar 

  • Priede IG, Froese R (2013) Colonization of the deep sea by fishes. J Fish Biol 83:1528–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puebla O, Bermingham E, Guichard F (2008) Population genetic analyses of Hypoplectrus coral reef fishes provide evidence that local processes are operating during the early stages of marine adaptive radiations. Mol Ecol 17:1405–1415. doi:10.1111/j.1365-294X.2007.03654.x

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA, DeVries AL (1998) Elevated concentrations and synthetic pathways of trimethylamine oxide and urea is some teleost fishes of McMurdo Sound, Antarctica. Fish Physiol Biochem 18:387–398

    Article  CAS  Google Scholar 

  • Rutschmann S, Matschiner M, Damerau M, Muschick M, Lehmann MF, Hanel R, Salzburger W (2011) Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol Ecol 20:4707–4721

    Article  PubMed  Google Scholar 

  • Sanchez S, Dettaï A, Bonillo C, Ozouf-Costaz C, Detrich HW III, Lecointre G (2007) Molecular and morphological phylogenies of the Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae. Polar Biol 30:155–166

    Article  Google Scholar 

  • Schwarzhans W, Mörs T, Engelbrecht A, Reguero M, Kriwet J (2017) Before the freeze: otoliths from the Eocene of Seymour Island, Antarctica, reveal dominance of gadiform fishes (Teleostei). J Syst Palaeontol 15:147–170. doi:10.1080/14772019.2016.1151958

    Article  PubMed  Google Scholar 

  • Ślósarczyk W (1983) Juvenile Trematomus bernacchii and Pagothenia brachysoma (Pisces, Nototheniidae) within krill concentrations off Balleny Islands (Antarctic). Polish Polar Res 4:57–69

    Google Scholar 

  • Smith WO, Ainley DG, Cattaneo-Vietti R (2007) Trophic interactions within the Ross Sea continental shelf ecosystem. Philos Trans R Soc B Biol Sci 362:95–111. doi:10.1098/rstb.2006.1956

    Article  Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    Article  CAS  PubMed  Google Scholar 

  • Stein DL, Andriashev AP (1990) Liparididae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 231–255

    Google Scholar 

  • Streelman JT, Alfaro M, Westneat MW, Bellwood DR, Karl SA (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56:961–971

    Article  CAS  PubMed  Google Scholar 

  • Thatje S, Hillenbrand C-D, Mackensen A, Larter R (2008) Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89:682–692

    Article  PubMed  Google Scholar 

  • Tiedtke JE, Kock K-H (1989) Structure and composition of the demersal fish fauna around Elephant Island. Arch FischereiWiss 39:143–169

    Google Scholar 

  • Weitzman SH (1997) Systematics of deep-sea fishes. In: Randall DJ, Farrell AP (eds) Deep-sea fishes, vol 16. Fish physiology. Academic Press, San Diego, pp 43–77

    Chapter  Google Scholar 

  • Wilson LAB, Colombo M, Hanel R, Salzburger W, Sánchez-Vilagra MR (2013) Ecomorphological disparity in an adaptive radiation: opercular bone shape and stable isotopes in Antarctic icefishes. Ecol Evol 3:3166–3182

    Article  PubMed  PubMed Central  Google Scholar 

  • Yancey PH, Siebenaller JF (1999) Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. J Exp Biol 202:3597–3603

    CAS  PubMed  Google Scholar 

  • Yancey PH, Siebenaller JF (2015) Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J Exp Biol 218:1880–1896. doi:10.1242/jeb.114355

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

For answering my questions and for providing information and advice, I am most grateful to: A.V. Balushkin (ZIN), Tim Berra (Ohio State-Mansfield), Romain Causse (MNHN), Guy Duhamel (MNHN), Richard Eakin, Rick Feeney (LACM), Jesús Matallanas (AUB), Andrey Petrov (VNIROA), David Stein (Oregon State), Andrew Stewart (NMNZ). I also thank Richard Eakin for his reading of and helpful comments on the manuscript. I especially appreciate the constructive comments and corrections from the formal manuscript reviewers including Guy Duhamel and Tetsuo Iwami. Supported by NSF ANT 04-36190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Eastman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eastman, J.T. Bathymetric distributions of notothenioid fishes. Polar Biol 40, 2077–2095 (2017). https://doi.org/10.1007/s00300-017-2128-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2128-x

Keywords

Navigation