Log in

Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap region in the Canadian High Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Non-permineralized or mummified ancient wood found within proglacial soil near the ad Astra Ice Cap (81°N, 76°W), Ellesmere Island, Canada was investigated to ascertain the identification of the trees, current morphological and chemical characteristics of the woods and the fungi within them. These woods, identified as Betula, Larix, Picea and Pinus, were found with varying states of physical and chemical degradation. Modern microbial decomposition caused by soft rot fungi was evident and rDNA sequencing of fungi obtained from the samples revealed several species including Cadophora sp., Exophiala sp., Phialocephala sp., as well as others. Analytical 13C-labeled tetramethylammonium hydroxide thermochemolysis showed the lignin from the ancient wood was in a high degree of preservation with minor side chain alteration and little to no demethylation or ring hydroxylation. The exposure of these ancient woods to the young soils, where woody debris is not usually prevalent, provides carbon and nutrients into the polar environment that are captured and utilized by unique decay fungi at this Arctic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064. doi:10.1016/j.soilbio.2006.01.016

    Article  CAS  Google Scholar 

  • Basinger JF (1991) The fossil forests of the Buchanan Lake Formation (Early Tertiary), Axel Heiberg Island, Canadian High Arctic Archipelago: preliminary floristics and paleoclimate. In: Christie RL, McMillan NJ (eds) Tertiary fossil forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago. Geological Survey of Canada Bulletin 403, pp 39–65

  • Basinger JF, McIver EE, LePage BA (1988) The fossil forest of Axel Heiberg Island. Musk Ox J 36:50–55

    Google Scholar 

  • Blanchette RA, Simpson E (1992) Soft rot decay and wood pseudomorphs in an ancient coffin (700 bc) from tumulus MM at Gordion, Turkey. Int Assoc Wood Anat J 13:201–213

    Google Scholar 

  • Blanchette RA, Cease KR, Abad AR, Burnes TA, Obst JR (1991) Ultrastructural characterization of wood from a Tertiary fossil forest in the Canadian Arctic. Can J Bot 69:560–568. doi:10.1139/b91-076

    Article  Google Scholar 

  • Blanchette RA, Held BW, Jurgens JA, McNew DL, Harrington TC, Duncan SM, Farrell RL (2004) Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Appl Environ Microbiol 70:1328–1335. doi:10.1128/AEM.70.3.1328-1335.2004

    Article  PubMed  CAS  Google Scholar 

  • Blanchette RA, Held BW, Jurgens JA (2008) Northumberland House, Fort Conger and the Peary Huts in the Canadian High Arctic: current condition and assessment of wood deterioration taking place. In: Barr S, Chaplin P (eds) Historical Polar Bases—preservation and management. ICOMOS monuments and sites No. XVII. International Polar Heritage Committee, Oslo, p 96

  • Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate root endophytes. Mycologia 92:230–232. doi:10.2307/3761555

    Article  Google Scholar 

  • del Rio JC, McKinney DE, Knicker H, Nanny MS, Hatcher PG (1998) Structural characterization of bio- and geo-macromolecules by off-line thermochemolysis with tetramethylammonium hydroxide. J Chromatogr A 823:433–448. doi:10.1016/S0021-9673(98)00268-4

    Article  CAS  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, p 407

    Google Scholar 

  • Filley TR (2003) Assessment of fungal wood decay by lignin analysis using tetramethylammonium hydroxide (TMAH) and 13C-labelled TMAH thermochemolysis. ACS Series 845. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. ACS Symposium Series 845. Oxford University Press, Oxford, pp 119–139

    Google Scholar 

  • Filley TR, Nierop KGJ, Wang Y (2006) The contribution of polyhydroxyl aromatic compounds to tetramethylammonium hydroxide lignin-based proxies. Org Geochem 37:711–727. doi:10.1016/j.orggeochem.2006.01.005

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281. doi:10.1038/nature06275

    Article  PubMed  CAS  Google Scholar 

  • Francis JE (1988) A 50-million-year-old fossil forest from Strathcona Fiord, Ellesmere Island, Arctic Canada: evidence for a warm polar climate. Arctic 41:314–318

    Google Scholar 

  • Harrington TC, McNew DL (2003) Phylogenetic analysis places Phialophora-like anamorph genus Cadophora in the Helotiales. Mycotaxon 87:141–151

    Google Scholar 

  • Held BW, Jurgens JA, Arenz BE, Duncan SM, Farrell RL, Blanchette RA (2005) Environmetal factors influencing microbial growth inside the historic huts of Ross Island, Antarctica. Int Biodeterior Biodegradation 55:45–53. doi:10.1016/j.ibiod.2004.06.011

    Article  Google Scholar 

  • Held BW, Jurgens JA, Duncan SM, Farrell RL, Blanchette RA (2006) Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antarctica. Polar Biol 29:526–531. doi:10.1007/s00300-005-0084-3

    Article  Google Scholar 

  • Hoadley BR (1995) Identifying wood: accurate results with simple tools. The Taunton Press, Newtown, p 223

    Google Scholar 

  • Jagels R, Day ME (2004) The adaptive physiology of Metasequoia to Eocene high-latitude environments. In: Hemsley AR, Poole I (eds) The evolution of plant physiology: from whole plants to ecosystems. Elsevier, London, pp 401–425

    Google Scholar 

  • Jagels R, LePage BA, Jiang M (2001) Definitive identification of Larix (Pinaceae) wood based on anatomy from the Middle Eocene, Axel Heiberg Island, Canadian High Arctic. Int Assoc Wood Anatomists J 22:73–83

    Google Scholar 

  • Jagels R, Visscher GE, Wheeler EA (2005) An Eocene high Arctic Angiosperm wood. Int Assoc Wood Anat J 26:387–392

    Google Scholar 

  • Jahren AH (2007) The Arctic forest of the Middle Eocene. Annu Rev Earth Planet Sci 35:509–540. doi:10.1146/annurev.earth.35.031306.140125

    Article  CAS  Google Scholar 

  • Jahren AH, Sternberg LSL (2003) Humidity estimates for the middle-Eocene Arctic rainforest. Geology 31(5):463–466. doi:10.1130/0091-7613(2003)031<0463:HEFTME>2.0.CO;2

    Article  Google Scholar 

  • Kaelin PE, Huggett WW, Anderson KB (2006) Comparison of vitrified and unvitrified Eocene woody tissues by TMAH thermochemolysis—implications for the early stages of the formation of vitrinite. Geochem Trans 7(9). doi:10.1186/1467-4866-7-9

  • Nelson BC, Goni MA, Hedges JI, Blanchette RA (1995) Soft-rot fungal degradation of lignin in 2700 year old archaeological woods. Holzforschung 49:1–10

    Article  CAS  Google Scholar 

  • Obst JR, McMillan NJ, Blanchette RA, Christensen DJ, Faix O, Han JS, Kuster TA, Landucci LL, Newman RH, Pettersen RC, Schwabdt VH, Wesolowski WF (1991) Characterization of Canadian Arctic fossil woods. In: RL Christie, McMillan NJ (eds) Tertiary fossil forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago. Geological Survey of Canada Bulletin 403, pp 123–146

  • Richter SL, LePage BA (2005) A high-resolution palynological analysis, Axel Heiberg Island, Canadian High Arctic. In: LePage BA, Williams CJ, Yang H (eds) The geobiology and ecology of Metasequoia. Springer, Berlin, pp 137–156

    Chapter  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353. doi:10.1046/j.1469-8137.2001.00177.x

    Article  CAS  Google Scholar 

  • Schoenhut K, Vann DR, LePage BA (2004) Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian High Arctic. Am J Bot 91:816–824. doi:10.3732/ajb.91.6.816

    Article  Google Scholar 

  • Schweingruber FH (1990) Anatomy of European woods. Haupt, Bern, p 800

    Google Scholar 

  • Shary S, Ralph SA, Hammel KE (2007) New Insights into the ligninolytic capability of a wood decay Ascomycete. Appl Environ Microbiol 73:6691–6694. doi:10.1128/AEM.01361-07

    Article  PubMed  CAS  Google Scholar 

  • Visscher GE, Jangels R (2003) Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. Int Assoc Wood Anat J 24:439–450

    Google Scholar 

  • Wheeler EA, Arnette CG (1994) Identification of Neogene woods from Alaska-Yukon. Quat Int 22/23:91–102. doi:10.1016/1040-6182(94)90008-6

    Article  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Van DR, Sweda T (2003) Reconstruction of Tertiary Metasequoia forests. II. Structure, biomass and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–292. doi:10.1666/0094-8373(2003)029<0271:ROTMFI>2.0.CO;2

    Article  Google Scholar 

  • Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219. doi:10.2307/3761073

    Article  Google Scholar 

  • Yang H, Huang Y, Leng Q, LePage BA, Williams CJ (2005) Biomolecular preservation of Tertiary Metasequoia fossil Lagerstatten revealed by comparative pyrolysis analysis. Rev Palaeobot Palynol 134:237–256. doi:10.1016/j.revpalbo.2004.12.008

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Treads, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. doi:10.1126/science.1059412

    Article  PubMed  CAS  Google Scholar 

  • Zanazzi A, Kohn MJ, MacFadden BJ, Terry DO (2007) Large temperature drop across the Eocene–Oligocene transition in central North. Am Nat 445:639–642

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Parks Canada, specifically Monty Yank, Nunavut Research Institute and the Polar Continental Shelf for their field and transportation assistance, Dr. Jason Smith and Ann Chaptman for their assistance with fungal sequencing and Benjamin Held for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel A. Jurgens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurgens, J.A., Blanchette, R.A. & Filley, T.R. Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap region in the Canadian High Arctic. Polar Biol 32, 751–758 (2009). https://doi.org/10.1007/s00300-008-0578-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0578-x

Keywords

Navigation