Log in

Delineating the mechanisms of elevated CO2 mediated growth, stress tolerance and phytohormonal regulation in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Global climate change has drastically affected natural ecosystems and crop productivity. Among several factors of global climate change, CO2 is considered to be the dynamic parameter that will regulate the responses of all biological system on earth in the coming decade. A number of experimental studies in the past have demonstrated the positive effects of elevated CO2 on photosynthesis, growth and biomass, biochemical and physiological processes such as increased C:N ratio, secondary metabolite production, as well as phytohormone concentrations. On the other hand, elevated CO2 imparts an adverse effect on the nutritional quality of crop plants and seed quality. Investigations have also revealed effects of elevated CO2 both at cellular and molecular level altering expression of various genes involved in various metabolic processes and stress signaling pathways. Elevated CO2 is known to have mitigating effect on plants in presence of abiotic stresses such as drought, salinity, temperature etc., while contrasting effects in the presence of different biotic agents i.e. phytopathogens, insects and herbivores. However, a well-defined crosstalk is incited by elevated CO2 both under abiotic and biotic stresses in terms of phytohormones concentration and secondary metabolites production. With this background, the present review attempts to shed light on the major effects of elevated CO2 on plant growth, physiological and molecular responses and will highlight the interactive effects of elevated CO2 with other abiotic and biotic factors. The article will also provide deep insights into the phytohormones modulation under elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are thankful to University of North Bengal for providing necessary facilities for writing this review article.

Author information

Authors and Affiliations

Authors

Contributions

SR and PM contributed equally in writing and editing of the whole manuscript.

Corresponding author

Correspondence to Piyush Mathur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Aryadeep Roychoudhury.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Mathur, P. Delineating the mechanisms of elevated CO2 mediated growth, stress tolerance and phytohormonal regulation in plants. Plant Cell Rep 40, 1345–1365 (2021). https://doi.org/10.1007/s00299-021-02738-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02738-w

Keywords

Navigation