Log in

Nanotechnology applications in rheumatology

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Nanomedicine (NM) is the medical use of nanotechnology (NT). NT is the study and control of nanoscale structures (between approximately 1 and 100 nm). Nanomaterials are created by manipulating atoms and molecules at the nanoscale, resulting in novel physical and chemical properties. With its targeted tissue delivery capabilities, NT has enabled molecular modulation of the immune response and underlying inflammatory responses in individuals with rheumatic diseases (RD). NM has enabled targeted drug delivery, reduced adverse effects on non-target organs, raised drug concentration in synovial tissue, and slowed the progression of immune-mediated RD such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Thus, NM has evolved in rheumatology prevention, diagnosis, and therapy. Animal models have proven superior outcomes to conventional techniques of treating specific illnesses. Nanodiamond (ND) immunomodulatory applications have been proposed as an alternative to traditional nanoparticles in the diagnosis and treatment of RA due to their small size and ability to be removed from the body without causing harm to the patient’s organs, such as the liver. However, human clinical NM needs more research. We conducted a literature review to assess the present role of NM in clinical rheumatology, describing its current and future applications in the diagnosis and treatment of rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are presented in the manuscript. There are no supplementary files.

Code availability

Not applicable.

References

  1. Garimella R, Eltorai AE (2016) Nanotechnology in orthopedics. J Orthop 14(1):30–33. https://doi.org/10.1016/j.jor.2016.10.026

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meena M, Zehra A, Swapnil P, Harish MA, Yadav G et al (2021) Endophytic nanotechnology: an approach to study scope and potential applications. Front Chem 9:613343. https://doi.org/10.3389/fchem.2021.613343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2(2):129–141

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Bragazzi NL (2019) Nanomedicine: insights from a bibliometrics-based analysis of emerging publishing and research trends. Medicina (Kaunas) 55(12):785. https://doi.org/10.3390/medicina55120785

    Article  Google Scholar 

  5. Soares S, Sousa J, Pais A, Vitorino C (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6:360. https://doi.org/10.3389/fchem.2018.00360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Freitas RA Jr (2005) What is nanomedicine? Nanomedicine 1(1):2–9. https://doi.org/10.1016/j.nano.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  7. Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S et al (2017) Diverse applications of nanomedicine. ACS Nano 11(3):2313–2381. https://doi.org/10.1021/acsnano.6b06040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Banik BL, Fattahi P, Brown JL (2016) Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):271–299. https://doi.org/10.1002/wnan.1364

    Article  PubMed  Google Scholar 

  9. Pirmardvand Chegini S, Varshosaz J, Taymouri S (2018) Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif Cells Nanomed Biotechnol 46(sup2):502–514. https://doi.org/10.1080/21691401.2018

    Article  PubMed  CAS  Google Scholar 

  10. Bernotiene E, Bagdonas E, Kirdaite G, Bernotas P, Kalvaityte U, Uzieliene I et al (2020) Emerging technologies and platforms for the immunodetection of multiple biochemical markers in osteoarthritis research and therapy. Front Med (Lausanne) 7:572977. https://doi.org/10.3389/fmed.2020.572977

    Article  Google Scholar 

  11. Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2):147–166. https://doi.org/10.1016/j.nano.2011.05.016

    Article  PubMed  CAS  Google Scholar 

  12. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21. https://doi.org/10.1016/j.nano.2005.12.003

    Article  PubMed  CAS  Google Scholar 

  13. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171. https://doi.org/10.1038/nrc1566

    Article  PubMed  CAS  Google Scholar 

  14. Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H (2016) Recent progress on nanostructures for drug delivery applications. J Nanomater. https://doi.org/10.1155/2016/5762431

    Article  Google Scholar 

  15. Friedman AD, Claypool SE, Liu R (2013) The smart targeting of nanoparticles. Curr Pharm Des 19(35):6315–6329. https://doi.org/10.2174/13816128113199990375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Oderda GM, Lawless GD, Wright GC, Nussbaum SR, Elder R, Kim K et al (2018) The potential impact of monitoring disease activity biomarkers on rheumatoid arthritis outcomes and costs. Per Med 15(4):291–301. https://doi.org/10.2217/pme-2018-0001

    Article  PubMed  CAS  Google Scholar 

  17. Pentecost A, Kim MJ, Jeon S, Ko YJ, Kwon IC, Gogotsi Y et al (2019) Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. Regen Biomater 6(3):163–174. https://doi.org/10.1093/rb/rbz012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zheng M, Jia H, Wang H, Liu L, He Z, Zhang Z et al (2021) Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Adv 11(13):7129–7137. https://doi.org/10.1039/d1ra00328c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8(6):2101–2141. https://doi.org/10.1021/mp200394t

    Article  PubMed  CAS  Google Scholar 

  20. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146. https://doi.org/10.1016/j.jconrel.2010.08.027

    Article  PubMed  CAS  Google Scholar 

  21. Rostamzadeh D, Razavi SR, Esmaeili S, Dolati S, Ahmahi M, Sadreddini S (2016) Application of nanoparticle technology in the treatment of Systemic lupus erythematous. Biomed Pharmacother 83:1154–1163. https://doi.org/10.1016/j.biopha.2016.08.020

    Article  PubMed  CAS  Google Scholar 

  22. Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJP (2021) Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 61:102011. https://doi.org/10.1016/j.jddst.2020.102011

    Article  CAS  Google Scholar 

  23. ** Y, Jiang T, Chaurasiya B, Zhou Y, Yu J, Wen J et al (2019) Advances in nanomedicine for the treatment of ankylosing spondylitis. Int J Nanomedicine 14:8521–8542. https://doi.org/10.2147/IJN.S216199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Garg T, Rath G, Goyal AK (2016) Nanotechnological approaches for the effective management of psoriasis. Artif Cells Nanomed Biotechnol 44(6):1374–1382. https://doi.org/10.3109/21691401.2015.1037885

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz MM (2007) The pathology of lupus nephritis. Semin Nephrol 27(1):22–34. https://doi.org/10.1016/j.semnephrol.2006.09.005

    Article  PubMed  CAS  Google Scholar 

  26. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y et al (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075. https://doi.org/10.1002/art.24436

    Article  PubMed  CAS  Google Scholar 

  27. Mühlfeld C, Gehr P, Rothen-Rutishauser B (2008) Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 138(27–28):387–391

    PubMed  Google Scholar 

  28. Hall RM, Sun T, Ferrari M (2012) A portrait of nanomedicine and its bioethical implications. J Law Med Ethics 40(4):763–779. https://doi.org/10.1111/j.1748-720X.2012.00705.x

    Article  PubMed  Google Scholar 

  29. Garg N, Kumawat J, Kaur K, Singh TG (2020) Management of rheumatoid arthritis: a nanomedicine perspective. Plant Archives 20(Suppl 1):3806–3811

    Google Scholar 

  30. Scheinman RI, Trivedi R, Vermillion S, Kompella UB (2011) Functionalized STAT1 siRNA nanoparticles regress rheumatoid arthritis in a mouse model. Nanomedicine (Lond) 6(10):1669–1682. https://doi.org/10.2217/nnm.11.90

    Article  CAS  Google Scholar 

  31. Strehl C (2016) SP0049 nanoparticles and the immune system. Ann Rheum Dis 75:13. https://doi.org/10.1136/annrheumdis-2016-eular.6203

    Article  Google Scholar 

  32. Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M et al (2020) Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 14(6):6383–6406. https://doi.org/10.1021/acsnano.0c03697

    Article  PubMed  CAS  Google Scholar 

  33. Huang H, Lou Z, Zheng S, Wu J, Yao Q, Chen R et al (2022) Intra-articular drug delivery systems for osteoarthritis therapy: shifting from sustained release to enhancing penetration into cartilage. Drug Deliv 29(1):767–791. https://doi.org/10.1080/10717544.2022.2048130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pi Y, Zhang X, Shao Z, Zhao F, Hu X, Ao Y (2015) Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther 22(6):439–448. https://doi.org/10.1038/gt.2015.16

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y et al (2018) Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol 14(8):1486–1495. https://doi.org/10.1166/jbn.2018.2596

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh S, Mukherjee B, Chaudhuri S, Roy T, Mukherjee A, Sengupta S (2018) Methotrexate aspasomes against rheumatoid arthritis: optimized hydrogel loaded liposomal formulation with in vivo evaluation in wistar rats. AAPS Pharm Sci Tech 19(3):1320–1336. https://doi.org/10.1208/s12249-017-0939-2

    Article  CAS  Google Scholar 

  37. Yang M, Ding J, Zhang Y, Chang F, Wang J, Gao Z et al (2016) Activated macrophage-targeted dextran-methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J Mater Chem B 4(12):2102–2113. https://doi.org/10.1039/c5tb02479j

    Article  PubMed  CAS  Google Scholar 

  38. Xu Y, Zhang Z, Wang H, Zhong W, Sun C, Sun W et al (2021) Zoledronic acid-loaded hybrid hyaluronic acid/polyethylene glycol/nano-hydroxyapatite nanoparticle: novel fabrication and safety verification. Front Bioeng Biotechnol 9:629928. https://doi.org/10.3389/fbioe.2021.629928

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dewangan A, Perumal Y, Pavurala N, Chopra K, Mazumder S (2017) Preparation, characterization and anti-inflammatory effects of curcumin loaded carboxymethyl cellulose acetate butyrate nanoparticles on adjuvant induced arthritis in rats. J Drug Deliv Sci Technol 41:269–279. https://doi.org/10.1016/J.JDDST.2017.07.022

    Article  CAS  Google Scholar 

  40. Sezlev Bilecen D, Uludag H, Hasirci V (2019) Development of PEI-RANK siRNA complex loaded plga nanocapsules for the treatment of osteoporosis. Tissue Eng Part A 25(1–2):34–43. https://doi.org/10.1089/ten.TEA.2017.0476

    Article  PubMed  CAS  Google Scholar 

  41. Yan Y, Liu XY, Lu A, Wang XY, Jiang LX, Wang JC (2022) Non-viral vectors for RNA delivery. J Control Release 342:241–279. https://doi.org/10.1016/j.jconrel.2022.01.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Khatri S, Hansen J, Pedersen NB, Brandt-Clausen IP, Gram-Nielsen S, Mendes AC et al (2022) Cyclic citrullinated peptide aptamer treatment attenuates collagen-induced arthritis. Biomacromol. https://doi.org/10.1021/acs.biomac.2c00144

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AN, KPI involved in conceptualization, manuscript writing and editing. AN, BB, HRS, PI, EGC, MD, AC, and KPI involved in manuscript writing, acquision, analysis of the work, literature search and references. All the authors have revised the manuscript critically, approved the version submitted for publication. All co-authors are familiar with and take full responsibility for the accuracy and integrity of all parts of the work.

Corresponding author

Correspondence to Arvind Nune.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

It is a review article and thus no ethical board clearance is required.

Informed consent

There is no patient data, and no consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: No part of the final version of the review, including ideas, text, and graphics, is copied, or published elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nune, A., Barman, B., Sapkota, H.R. et al. Nanotechnology applications in rheumatology. Rheumatol Int 42, 1883–1891 (2022). https://doi.org/10.1007/s00296-022-05141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-022-05141-0

Keywords

Navigation