Log in

Remarkable mechanical performance at low temperatures of hydroxy-terminated polybutadiene enhanced by hyperbranched polysiloxane

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The inadequate mechanical properties and limited low temperature adaptability of Hydroxy-terminated polybutadiene (HTPB) impose constraints on its practical utilization in solid propellant applications. In the present investigation, a pioneering approach involved the synthesis of a novel hyperbranched polysiloxane, denoted as HBPSi-NH2, which encompasses –NH2 groups and Si–O–C chains. The HBPSi-NH2 with its unique flexible Si–O–C segments, serving as the soft component in the crosslinked network, in conjunction with the curing agent TDI as the hard component, achieves a synergistic balance of rigidity and flexibility. The resulting HTPB composites not only demonstrate enhanced mechanical properties but also exhibit excellent low temperature adaptability. Remarkably, the HTPB composites exhibit excellent mechanical properties at both 25 °C (0.74 MPa ~ 2.08 MPa) and − 40 °C (1.77 MPa ~ 12.49 MPa). This enhancement can be ascribed to the abundant presence of functional groups, namely –OH and –NH2. These active groups significantly augment the cross-linking density within the HTPB system, also promote the formation of numerous hydrogen bonds, enhancing the strength of HTPB. Simultaneously, the abundant presence of Si–O–C flexible chain segments within HBPSi-NH2 enhances the reactivity of the HTPB molecular chains, not only improving the toughness of HTPB but also significantly reducing its Tg (− 65.95 °C to − 75.62 °C). Furthermore, this study establishes a pivotal direction for the design and synthesis of high-performance HTPB-PU materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Yarmohammadi M, Shahidzadeh M, Ramezanzadeh B (2018) Designing an elastomeric polyurethane coating with enhanced mechanical and self-healing properties: the influence of disulfide chain extender. Prog Org Coat 121:45–52. https://doi.org/10.1016/j.porgcoat.2018.04.009

    Article  CAS  Google Scholar 

  2. Shahidzadeh M, Varkaneh ZK, Ramezanzadeh B, Pedram MZ, Yarmohammadi M (2020) Self-healing dual cured polyurethane elastomeric coatings prepared by orthogonal reactions. Prog Org Coat 140:105503. https://doi.org/10.1016/j.porgcoat.2019.105503

    Article  CAS  Google Scholar 

  3. Toosi FS, Shahidzadeh M, Ramezanzadeh B (2015) An investigation of the effects of pre-polymer functionality on the curing behavior and mechanical properties of HTPB-based polyurethane. J Ind Eng Chem 24:166–173. https://doi.org/10.1016/j.jiec.2014.09.025

    Article  CAS  Google Scholar 

  4. Zhou QZ, Jie SY, Li BG (2015) Facile synthesis of novel HTPBs and EHTPBs with high cis-1,4 content and extremely low glass transition temperature. Polymer 67:208–215. https://doi.org/10.1016/j.polymer.2015.04.078

    Article  CAS  Google Scholar 

  5. Dossi E, Earnshaw J, Ellison L, Sandos GR, Cavaye H, Cleaver DJ (2021) Understanding and controlling the glass transition of HTPB oligomers. Polym Chem 12(17):2606–2617. https://doi.org/10.1039/D1PY00233C

    Article  CAS  Google Scholar 

  6. Amjed N, Bhatti IA, Zia KM, Iqbal J, Jamil Y (2020) Synthesis and characterization of stable and biological active chitin-based polyurethane elastomers. Int J Biol Macromol 154:1149–1157. https://doi.org/10.1016/j.ijbiomac.2019.11.097

    Article  CAS  PubMed  Google Scholar 

  7. Rath SK, Patri M, Khakhar DV (2012) Structure-thermomechanical property correlation of moisture cured poly(urethane-urea)/clay nanocomposite coatings. Prog Org Coat 75(3):264–273. https://doi.org/10.1016/j.porgcoat.2012.05.011

    Article  CAS  Google Scholar 

  8. Tu J, Xu H, Liang L, Li PY, Guo XD (2020) Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface[J]. New J Chem 44(44):19184–19191. https://doi.org/10.1039/D0NJ04085A

    Article  CAS  Google Scholar 

  9. Liang CY, Li J, **a M, Li GP, Luo YJ (2017) Performance and kinetics study of self-repairinghydroxyl-terminated polybutadiene binders basedon the diels-alder reaction. Polymer 9(6):200. https://doi.org/10.3390/polym9060200

    Article  CAS  Google Scholar 

  10. Lee S, Choi JH, Hong IK, Lee JW (2015) Curing behavior of polyurethane as a binder for polymer-bonded explosives. J Ind Eng Chem 21:980–985. https://doi.org/10.1016/j.jiec.2014.05.004

    Article  CAS  Google Scholar 

  11. Wang YH, Liu LL, **ao LY, Wang ZX (2015) Thermal decomposition of HTPB/AP and HTPB/HMX mixtures with low content of oxidizer. J Therm Anal Calorim 119(3):1673–1678. https://doi.org/10.1007/s10973-014-4324-z

    Article  CAS  Google Scholar 

  12. Zhang M, Zhao FQ, Wang Y, Chen XL, Pei Q, Xu HX, Hao HX, Yang YJ, Li H (2021) Evaluation of graphene-ferrocene nanocomposite as multifunctional combustion catalyst in AP-HTPB propellant. Fuel 302(6):121229. https://doi.org/10.1016/j.fuel.2021.121229

    Article  CAS  Google Scholar 

  13. Wang Q, Gao J, Liu SS, Wang YC, Wu LR (2023) Lignin nanoparticle reinforced multifunctional polyvinyl alcoholpolyurethane composite hydrogel with excellent mechanical, UV-blocking, rheological and thermal properties. Int J Biol Macromol 232:123338. https://doi.org/10.1016/j.ijbiomac.2023.123338

    Article  CAS  PubMed  Google Scholar 

  14. Wang XH, Zhan SN, Lu ZY, Li J, Yang X, Men QYN, YF, Sun JQ, (2020) Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv Mater 32(50):2005759. https://doi.org/10.1002/adma.202005759

    Article  CAS  Google Scholar 

  15. Zhang LZ, Liu ZH, Wu XL, Guan QB, Chen S, Sun LJ, Guo YF, Wang SL, Song JC, Jeffries EM, He CL, Qing FL, Bao XG, You ZW (2019) A Highly efficient self-healing elastomer with unprecedented mechanical properties. Adv Mater 31(23):1901402. https://doi.org/10.1002/adma.201901402

    Article  Google Scholar 

  16. Patil AM, Jirimali HD, Gite VV, Jagtap RN (2020) Synthesis and performance of bio-based hyperbranched polyol in polyurethane coatings. Prog Org Coat 149:105895. https://doi.org/10.1016/j.porgcoat.2020.105895

    Article  CAS  Google Scholar 

  17. Huang WJ, Huang JS, Yu B, Meng Y, Cao XW, Zhang QC, Wu W, Shi D, Jiang T, Li RKY (2021) Facile preparation of phosphorus containing hyperbranched polysiloxane grafted graphene oxide hybrid toward simultaneously enhanced flame retardancy and smoke suppression of thermoplastic polyurethane nanocomposites. Compo Part A-Appl S 150:106614. https://doi.org/10.1016/j.compositesa.2021.106614

    Article  CAS  Google Scholar 

  18. Guo LL, Yan LR, He YY, Feng WX, Zhao Y, Tang BZ, Yan HX (2022) Hyperbranched polyborate: a non-conjugated fluorescent polymer with unanticipated high quantum yield and multicolor emission. Angew Chem Int Edit 61(29):e202204383. https://doi.org/10.1002/anie.202204383

    Article  CAS  Google Scholar 

  19. Ai XQ, Pan JS, **e QY, Ma CF, Zhang GZ (2021) UV-curable hyperbranched poly(ester-co-vinyl) by radical ring-opening copolymerization for antifouling coatings. Polym Chem 12(31):4524–4531. https://doi.org/10.1039/D1PY00810B

    Article  CAS  Google Scholar 

  20. Bai T, Zhang YS, Wang L, Yan HX (2022) Zhou WH (2022) Construction of fluorescent hyperbranched polysiloxane-based clusteroluminogens with enhanced quantum yield and efficient cellular lighting. Aggregate 4(2):e267. https://doi.org/10.1002/agt2.267

    Article  CAS  Google Scholar 

  21. Feng WX, Yan LR, Yan HX, Tian W (2023) Eu3+ coordinated hyperbranched polysiloxane with multicolor emission and long fluorescence lifetime. Chinese J Chem 41:2082–2088. https://doi.org/10.1002/cjoc.202300067

    Article  CAS  Google Scholar 

  22. Lei XF, Chen Y, Zhang HP, Li XJ, Yao P, Zhang QY (2013) Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl Mate Inter 5(20):10207–10220. https://doi.org/10.1021/am402957s

    Article  CAS  Google Scholar 

  23. Niu S, Yan HX, Li S, Tang C, Chen ZY, Zhi XL, Xu PL (2016) A multifunctional silicon-containing hyperbranched epoxy: controlled synthesis, toughening bismaleimide and fluorescent properties. J Mater Chem C 4(28):6881–6893. https://doi.org/10.1039/C6TC02546C

    Article  CAS  Google Scholar 

  24. Yang KM, Yuan JS, Zhang YB, Liu R, Feng WX, Shang GF, Yan HX (2022) Synergy of hyperbranched polysiloxane and MoS2/rGO heterostructured particles for enhancing polyimide bonded solid lubricating coatings. Prog Org Coat 173:107183. https://doi.org/10.1016/j.porgcoat.2022.107183

    Article  CAS  Google Scholar 

  25. Zhang YB, Yan HX, Feng GP, Liu R, Yang KM, Feng WX, Zhang SY, He C (2021) Non-aromatic Si, P, N-containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature. Compos Part B-Eng 222:109043. https://doi.org/10.1016/j.compositesb.2021.109043

    Article  CAS  Google Scholar 

  26. Zhang YB, Liu R, Yu RZ, Yang KM, Guo LL, Yan HX (2022) Phosphorus-free hyperbranched polyborate flame retardant: Ultra-high strength and toughness, reduced fire hazards and unexpected transparency for epoxy resin. Compos Part B-Eng 242:109043. https://doi.org/10.1016/j.compositesb.2022.110101

    Article  Google Scholar 

  27. Chen YS, Wang L, Yu HJ, Zhao YL, Sun RL, **g GH, Huang J, Khalid H, Abbasi NM, Akram M (2015) Synthesis and application of polyethylene-based functionalized hyperbranched polymers. Prog Polym Sci 45:23–43. https://doi.org/10.1016/j.progpolymsci.2015.01.004

    Article  CAS  Google Scholar 

  28. Zhang YB, Yan HX, Yu RZ, Yuan JS, Yang KM, Liu R, He YY, Tian W (2024) Hyperbranched dynamic crosslinking networks enable degradable, reconfigurable, and multifunctional epoxy vitrimer. Adv Sci 11:2306350. https://doi.org/10.1002/advs.202306350

    Article  CAS  Google Scholar 

  29. Zhao Y, Xu L, He YY, Feng ZX, Feng WX, Yan HX (2023) Nonconventional aggregation-induced emission polysiloxanes: structures, characteristics, and applications. Aggregate 5:e471. https://doi.org/10.1002/agt2.471

    Article  CAS  Google Scholar 

  30. Guo LL, Yan LR, He YY, Feng WX, Zhao Y, Tang BZ, Yan HX (2022) Hyperbranched polyborate: a non-conjugated fluorescent polymer with unanticipated high quantum yield and multicolor emission. Angew Chem Int Ed 61:e202204383. https://doi.org/10.1002/anie.202204383

    Article  CAS  Google Scholar 

  31. He YY, Feng WX, Qiao YJ, Tian ZX, Tang BZ, Yan HX (2023) Hyperbranched polyborosiloxanes: non-traditional luminescent polymers with red delayed fluorescence. Angew Chem Int Ed 62:e20231257. https://doi.org/10.1002/anie.202312571

    Article  CAS  Google Scholar 

  32. Bai LH, Yan HX, Bai T, Feng YB, Zhao Y, Ji Y, Feng WX, Lu TL, Nie YF (2019) High fluorescent hyperbranched polysiloxane containing β-cyclodextrin for cell imaging and drug delivery. Biomacromol 20(11):4230–4040. https://doi.org/10.1021/acs.biomac.9b01217

    Article  CAS  Google Scholar 

  33. Feng YB, Bai T, Yan HX, Ding F, Bai LH, Feng WX (2019) High fluorescence quantum yield based on the through-space conjugation of hyperbranched polysiloxane. Macromolecules 52(8):3075–3082. https://doi.org/10.1021/acs.macromol.9b00263

    Article  CAS  Google Scholar 

  34. Saleesung T, Reichert D, Saalwaechter K, Sirisinha C (2015) Correlation of crosslink densities using solid state NMR and conventional techniques in peroxide-crosslinked EPDM rubber. Polymer 56:309–317. https://doi.org/10.1016/j.polymer.2014.10.057

    Article  CAS  Google Scholar 

  35. Liu HD, Zhu GM, Zhang CS (2020) Promoted ablation resistance of polydimethylsiloxane via crosslinking with multi-ethoxy POSS. Composites Part B-Engineering 190:107901. https://doi.org/10.1016/j.compositesb.2020.107901

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (22175143) and Foundation of Science and Technology on Combustion and Explosion Laboratory (J-JK-JJ-2201/6142603032210). Thanks to the Analytical & Testing Center of Northwestern Polytechnical University for test assistance.

Author information

Authors and Affiliations

Authors

Contributions

Junshan Yuan: Conceptualization, Formal analysis, Writing - original draft. **aoying Huang: Investigation. Rui Wang: Review. Wei Tian: Supervision. Weixu Feng: Supervision. Hongxia Yan: Conceptualization, Writing - review & editing.

Corresponding author

Correspondence to Hongxia Yan.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 343 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Huang, X., Wang, R. et al. Remarkable mechanical performance at low temperatures of hydroxy-terminated polybutadiene enhanced by hyperbranched polysiloxane. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05374-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05374-y

Navigation