Log in

Biocomposites based on polypropylene and Agave fibers (Agave Americana L): investigation on physical, thermal and mechanical properties

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study is a comparative assessment of polypropylene composites reinforced with two different range size of Agave Americana fibers. The first is from 125 to 630 microns, named as Short Agave Fiber (SHAF), and the second range is beyond 630 microns, named as Long Agave Fiber (LAF). The composites were produced by twin-screw extrusion and injection molding processes. The composite manufacturing by this interior part of plant agave fibers is mentioned in the first time in the literature. The fiber content for the SHAF and LAF composites was chosen as 10 wt. %. It was found that better mechanical properties were achieved with LAF composite which increased by 301.4% compared with the neat PP. This was explained by LAF features compared to SHAF such as the higher cellulose content LAF (73.5%) and SHAF (40.3%), the higher crystallinity index was obtained better thermal stability which led to a composite which is more crystalline, more thermally stable and stiffer. This was explained by the good interfacial adhesion between fibers and the matrix revealed by SEM analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Estaji S, Paydayesh A, Mousavi SR et al (2021) Polycarbonate/poly(methyl methacrylate)/silica aerogel blend composites for advanced transparent thermal insulations: mechanical, thermal, and optical studies. Polym Compos 42:5323–5334. https://doi.org/10.1002/pc.26226

    Article  CAS  Google Scholar 

  2. Mousavi SR, Faraj Nejad S, Jafari M, Paydayesh A (2021) Polypropylene/ethylene propylene diene monomer/cellulose nanocrystal ternary blend nanocomposites: effects of different parameters on mechanical, rheological, and thermal properties. Polym Compos 42:4187–4198. https://doi.org/10.1002/pc.26137

    Article  CAS  Google Scholar 

  3. Razavi M, Sadeghi N, Jafari SH et al (2022) Thermo-rheological probe of microstructural evolution and degradation pathway in the flame-retarded PP/EVA/NOR/clay nanocomposites. Rheol Acta 61:25–47. https://doi.org/10.1007/s00397-021-01309-w

    Article  CAS  Google Scholar 

  4. Mousavi SR, Estaji S, Raouf Javidi M et al (2021) Toughening of epoxy resin systems using core–shell rubber particles: a literature review. J Mater Sci 56:18345–18367. https://doi.org/10.1007/s10853-021-06329-8

    Article  CAS  Google Scholar 

  5. Liu T, Huang K, Li L et al (2019) High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: fabrication, in vitro and in vivo biocompatibility evaluation. Compos Sci Technol 175:100–110. https://doi.org/10.1016/j.compscitech.2019.03.012

    Article  CAS  Google Scholar 

  6. Zhang C, Liu X, Liu H et al (2019) Multi-walled carbon nanotube in a miscible PEO/PMMA blend: thermal and rheological behavior. Polym Test 75:367–372. https://doi.org/10.1016/j.polymertesting.2019.03.003

    Article  CAS  Google Scholar 

  7. Jiang L, He C, Fu J, Li X (2018) Wear behavior of alkali-treated sorghum straw fiber reinforced polyvinyl chloride composites in corrosive water conditions. Bio Resources 13(2):3362–3376

    CAS  Google Scholar 

  8. Singha AS, Rana RK (2013) Preparation and properties of agave fiber-reinforced polystyrene composites. J Thermoplast Compos Mater 26(4):513–526. https://doi.org/10.1177/0892705711425848

    Article  CAS  Google Scholar 

  9. Shi X, Yang P, Peng X et al (2019) Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: smoke suppression and thermal stability of flexible polyurethane foams. Polymer 170:65–75. https://doi.org/10.1016/j.polymer.2019.03.008

    Article  CAS  Google Scholar 

  10. Sullins T, Pillay S, Komus A, Ning H (2017) Hemp fi ber reinforced polypropylene composites: the effects of material treatments. Compos B 114:15–22. https://doi.org/10.1016/j.compositesb.2017.02.001

    Article  CAS  Google Scholar 

  11. Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Prog 34:29–41. https://doi.org/10.1002/btpr.2565

    Article  CAS  PubMed  Google Scholar 

  12. Riaz S, Rhee KY, Park SJ (2021) Polyhydroxyalkanoates (Phas): biopolymers for biofuel and biorefineries. Polymers 13:1–21. https://doi.org/10.3390/polym13020253

    Article  CAS  Google Scholar 

  13. Qu M, Nilsson F, Qin Y et al (2017) Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Compos Sci Technol 150:24–31. https://doi.org/10.1016/j.compscitech.2017.07.004

    Article  CAS  Google Scholar 

  14. Wang X, Pan Y, Qin Y et al (2018) Creep and recovery behavior of injection-molded isotactic polypropylene with controllable skin-core structure. Polym Test 69:478–484. https://doi.org/10.1016/j.polymertesting.2018.05.040

    Article  CAS  Google Scholar 

  15. Pan Y, Guo X, Zheng G et al (2018) Shear-induced skin-core structure of molten isotactic polypropylene and the formation of β-crystal. Macromol Mater Eng 303(6):1800083. https://doi.org/10.1002/mame.201800083

    Article  CAS  Google Scholar 

  16. Fu S, Yu B, Tang W et al (2018) Mechanical properties of polypropylene composites reinforced by hydrolyzed and microfibrillated Kevlar fibers. Compos Sci Technol 163:141–150. https://doi.org/10.1016/j.compscitech.2018.03.020

    Article  CAS  Google Scholar 

  17. Zhang X, Wang X, Liu X et al (2018) Porous polyethylene bundles with enhanced hydrophobicity and pum** oil-recovery ability via skin-peeling. ACS Sustain Chem Eng 6(10):12580–12585. https://doi.org/10.1021/acssuschemeng.8b03305

    Article  CAS  Google Scholar 

  18. Zhang F, Liu X, Zheng G et al (2018) Facile route to improve the crystalline memory effect: electrospun composite fiber and annealing. Macromol Chem Phys 219(17):1800236. https://doi.org/10.1002/macp.201800236

    Article  CAS  Google Scholar 

  19. Panaitescu DM, Nicolae CA, Vuluga Z et al (2016) Influence of hemp fibers with modified surface on polypropylene composites. J Ind Eng Chem 37:137–146. https://doi.org/10.1016/j.jiec.2016.03.018

    Article  CAS  Google Scholar 

  20. Jiang J, Liu X, Lian M et al (2018) Self-reinforcing and toughening isotactic polypropylene via melt sequential injection molding. Polym Test 67:183–189. https://doi.org/10.1016/j.polymertesting.2018.03.005

    Article  CAS  Google Scholar 

  21. Liu X, Pan Y, Zheng G et al (2018) Overview of the experimental trends in water-assisted injection molding. Macromol Mater Eng 303(8):1800035. https://doi.org/10.1002/mame.201800035

    Article  CAS  Google Scholar 

  22. Taktak I, Mansouri A, Souissi S, Etoh MA, Elloumi A (2023) Biocomposites films based on polylactic acid and olive wood-flour: investigation on physical, thermal and mechanical properties. J Elastom Plast. https://doi.org/10.1177/00952443231165426

    Article  Google Scholar 

  23. Rosli NA, Ahmad I, Abdullah I et al (2015) Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate. Carbohyd Polym 125:69–75. https://doi.org/10.1016/j.carbpol.2015.03.002

    Article  CAS  Google Scholar 

  24. Hamdi SE, Delisée C, Malvestio J et al (2015) X-ray computed microtomography and 2D image analysis for morphological characterization of short lignocellulosic fibers raw materials: a benchmark survey. Compos A Appl Sci Manuf 76:1–9. https://doi.org/10.1016/j.compositesa.2015.04.019

    Article  CAS  Google Scholar 

  25. Taktak I, Mansouri A, Guerfali M et al (2023) Active bio composites films based on PLA/olive wood flour (Olea europaea L.)/cinnamon essential oil. Polym Bull. https://doi.org/10.1007/s00289-023-04737-1

    Article  Google Scholar 

  26. Abraham E, Deepa B, Pothan LA et al (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475. https://doi.org/10.1016/j.carbpol.2011.06.034

    Article  CAS  Google Scholar 

  27. Sapuan SM, Pua FL, El-Shekeil YA, Al-Qqla FM (2013) Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Mater Des 50:467–470. https://doi.org/10.1016/j.matdes.2013.03.013

    Article  CAS  Google Scholar 

  28. Munawar SS, Umemura K, Kawai S (2007) Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53:108–113. https://doi.org/10.1007/s10086-006-0836-x

    Article  Google Scholar 

  29. le Xu Y, Dayo AQ, Wang J et al (2018) Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fibers reinforced composites using a novel in-situ generated curing agent. Mater Chem Phys 203:293–301. https://doi.org/10.1016/j.matchemphys.2017.10.004

    Article  CAS  Google Scholar 

  30. Akin DE, Condon B, Sohn M et al (2007) Optimization for enzyme-retting of flax with pectate lyase. Ind Crops Prod 25:136–146. https://doi.org/10.1016/j.indcrop.2006.08.003

    Article  CAS  Google Scholar 

  31. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27. https://doi.org/10.1016/j.tibtech.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  32. Thamae T, Marien R, Chong L et al (2008) Develo** and characterizing new materials based on waste plastic and agro-fibre. J Mater Sci 43:4057–4068. https://doi.org/10.1007/s10853-008-2495-3

    Article  CAS  Google Scholar 

  33. Bilba K, Arsene MA, Ouensanga A (2007) Study of banana and coconut fibers. Botanical composition, thermal degradation and textural observations. Biores Technol 98:58–68. https://doi.org/10.1016/j.biortech.2005.11.030

    Article  CAS  Google Scholar 

  34. Hulle A, Kadole P, Katkar P (2015) Agave Americana leaf fibers. Fibers 3(1):64–75

    Article  CAS  Google Scholar 

  35. Msahli S, Ydrean J, Sakli F (2005) Evaluating the fineness of Agave Americana L. Fibers Text Res J 75(7):540–543. https://doi.org/10.1177/0040517505053808

    Article  CAS  Google Scholar 

  36. Deghboudj S, Boukhedena W, Satha H (2023) Optimization of bending and compressive strength behavior of Agave americana fiber reinforced cementitious composite using response surface methodology. Period Polytech Civ Eng 67:744–756. https://doi.org/10.3311/ppci.21696

    Article  Google Scholar 

  37. Mylsamy K, Rajendran I (2011) The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Mater Des 32:3076–3084. https://doi.org/10.1016/j.matdes.2010.12.051

    Article  CAS  Google Scholar 

  38. Mansouri A, Ben Nasr J, Ben Amar M, Elhalouani F (2020) Characterization of fiber extracted from Agave americana after burial in soil. Fibers Polym 21:724–732. https://doi.org/10.1007/s12221-020-8666-9

    Article  CAS  Google Scholar 

  39. Jaouadi M, Msahli S, Sakli F (2011) A study of the physical and mechanical properties of paper made from Agave americana L. fibers. Mater Manuf Process 26:567–572. https://doi.org/10.1080/10426910903124878

    Article  CAS  Google Scholar 

  40. Bessadok A, Roudesli S, Marais S et al (2009) Etude et caracterisation des fibres d’alfa et d’agave modifiees chimiquement en vue de les incorporer dans un composite amatrice polyester. Compos A Appl Sci Manuf 40:184–195. https://doi.org/10.1016/j.compositesa.2008.10.018

    Article  CAS  Google Scholar 

  41. Ortega Z, Castellano J, Suárez L et al (2019) Characterization of Agave americana L. plant as potential source of fibres for composites obtaining. SN Appl Sci 1:1–9. https://doi.org/10.1007/s42452-019-1022-2

    Article  CAS  Google Scholar 

  42. Thamarai Selvi S, Sunitha R, Ammayappan L, Prakash C (2023) Impact of chemical treatment on surface modification of Agave Americana fibres for composite application—a futuristic approach. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2142726

    Article  Google Scholar 

  43. Bessghaier A, Oudiani EL (2010) Contribution à l ‘ étude du comportement mécanique des fibres d ‘ Agave Americana L.

  44. Mylsamy K, Rajendran I (2011) Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater Des 32:4629–4640. https://doi.org/10.1016/j.matdes.2011.04.029

    Article  CAS  Google Scholar 

  45. Henriksson G, Akin DE, Hanlin RT et al (1997) Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe. Appl Environ Microbiol 63:3950–3956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akin DE (2013) Linen most useful: perspectives on structure, chemistry, and enzymes for retting flax. ISRN Biotechnol 2013:23. https://doi.org/10.5402/2013/186534

    Article  CAS  Google Scholar 

  47. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  48. Torres-tello EV, Robledo-ortíz JR, González-garcía Y et al (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly (hydroxybutyrate-co-hydroxyvalerate). Ind Crops Prod 99:117–125. https://doi.org/10.1016/j.indcrop.2017.01.035

    Article  CAS  Google Scholar 

  49. Cisneros-l EO (2016) Rotomolded polyethylene-agave fiber composites: effect of fiber surface treatment on the mechanical properties. Polym Eng Sci 56(8):856–865. https://doi.org/10.1002/pen

    Article  Google Scholar 

  50. Edén D, Denis RRG, Omar E et al (2017) Polylactic acid—agave fiber biocomposites produced by rotational molding: a comparative study with compression molding. Adv Polym Technol 37(7):2528–2540. https://doi.org/10.1002/adv.21928

    Article  CAS  Google Scholar 

  51. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  52. Moshiul Alam AKM, Beg MDH, Yunus RM et al (2018) Modification of structure and properties of well-dispersed dendrimer coated multi-walled carbon nanotube reinforced polyester nanocomposites. Polym Test 68:116–125. https://doi.org/10.1016/j.polymertesting.2018.04.005

    Article  CAS  Google Scholar 

  53. Alam AKMM, Beg MDH, Yunus RM (2017) Microstructure and fractography of multiwalled carbon nanotube reinforced unsaturated polyester nanocomposites. Polym Compos 38:E462–E471. https://doi.org/10.1002/pc.23911

    Article  CAS  Google Scholar 

  54. Mustafa WA, Saidi SA, Zainal M, Santiagoo R (2018) Experimental study of composites material based on thermal analysis. J Adv Res Fluid Mech Therm Sci 43:37–44

    Google Scholar 

  55. Morán-Velázquez DC, Monribot-Villanueva JL, Bourdon M et al (2020) Unravelling chemical composition of agave spines: news from Agave fourcroydes Lem. Plants 9:1–15. https://doi.org/10.3390/plants9121642

    Article  CAS  Google Scholar 

  56. Madhu P, Sanjay MR, Jawaid M et al (2020) A new study on effect of various chemical treatments on Agave Americana fiber for composite reinforcement: physico-chemical, thermal, mechanical and morphological properties. Polym Testing 85:106437. https://doi.org/10.1016/j.polymertesting.2020.106437

    Article  CAS  Google Scholar 

  57. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohyd Polym 181:650–658. https://doi.org/10.1016/j.carbpol.2017.11.099

    Article  CAS  Google Scholar 

  58. El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2012) Mercerization of Agave americana L. fibers. J Text Inst 103(5):565–574. https://doi.org/10.1080/00405000.2011.590010

    Article  CAS  Google Scholar 

  59. Saravanakumar SS, Kumaravel A, Nagarajan T et al (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohyd Polym 92(2):1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

    Article  CAS  Google Scholar 

  60. Kumar R, Hynes NRJ, Senthamaraikannan P et al (2018) Physicochemical and thermal properties of Ceiba pentandra bark fiber. J Nat Fibers 15:822–829. https://doi.org/10.1080/15440478.2017.1369208

    Article  CAS  Google Scholar 

  61. Indran S, Raj RE (2015) Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohyd Polym 117:392–399. https://doi.org/10.1016/j.carbpol.2014.09.072

    Article  CAS  Google Scholar 

  62. Yang Q, Pan X (2012) Pretreatment of Agave americana stalk for enzymatic saccharification. Biores Technol 126:336–340. https://doi.org/10.1016/j.biortech.2012.10.018

    Article  CAS  Google Scholar 

  63. Sathishkumar TP (2013) Characterization of new cellulose Sansevieria ehrenbergii fibers for polymer composites. Compos Interfaces 20(8):575–593. https://doi.org/10.1080/15685543.2013.816652

    Article  CAS  Google Scholar 

  64. Indran S, Raj RE, Sreenivasan VS (2014) Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohyd Polym 110:423–429. https://doi.org/10.1016/j.carbpol.2014.04.051

    Article  CAS  Google Scholar 

  65. De Rosa IM, Kenny JM, Puglia D et al (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70(1):116–122. https://doi.org/10.1016/j.compscitech.2009.09.013

    Article  CAS  Google Scholar 

  66. Ganeshan P, NagarajaGanesh B, Ramshankar P, Raja K (2018) Calotropis gigantea fibers: a potential reinforcement for polymer matrices. Int J Polym Anal Charact 23(3):271–277. https://doi.org/10.1080/1023666X.2018.1439560

    Article  CAS  Google Scholar 

  67. Porras A, Maranon A, Ashcroft IA (2015) Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Compos B Eng 74:66–73. https://doi.org/10.1016/j.compositesb.2014.12.033

    Article  CAS  Google Scholar 

  68. Reddy KO, Zhang J, Zhang J, Rajulu AV (2014) Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohyd Polym 114:537–545. https://doi.org/10.1016/j.carbpol.2014.08.054

    Article  CAS  Google Scholar 

  69. De Rosa IM, Kenny JM, Maniruzzaman M et al (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71(2):246–254. https://doi.org/10.1016/j.compscitech.2010.11.023

    Article  CAS  Google Scholar 

  70. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  71. Yanuhar U, Permanasari AA, Fikri AA et al (2017) Pulsed electric field assisted extraction of cellulose from mendong fiber (Fimbristylis globulosa) and its characterization. J Nat Fibers 15(3):406–415. https://doi.org/10.1080/15440478.2017.1330722

    Article  CAS  Google Scholar 

  72. Subramanian K, Senthil Kumar P, Jeyapal P, Venkatesh N (2005) Characterization of ligno-cellulosic seed fibre from Wrightia Tinctoria plant for textile applications-an exploratory investigation. Eur Polym J 41:853–861. https://doi.org/10.1016/j.eurpolymj.2004.10.037

    Article  CAS  Google Scholar 

  73. Pereira SC, Maehara L, Machado CMM, Farinas CS (2016) Physical-chemical-morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy 87:607–617. https://doi.org/10.1016/j.renene.2015.10.054

    Article  CAS  Google Scholar 

  74. Jcc S, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohyd Polym 142:158–166. https://doi.org/10.1016/j.carbpol.2016.01.015

    Article  CAS  Google Scholar 

  75. Raja K, Prabu B, Ganeshan P et al (2021) Characterization studies of natural cellulosic fibers extracted from shwetark stem. J Nat Fibers 18:1934–1945. https://doi.org/10.1080/15440478.2019.1710650

    Article  CAS  Google Scholar 

  76. Manivel S, Pannirselvam N, Gopinath R, Sathishkumar TP (2022) Physico-mechanical, chemical composition and thermal properties of cellulose fiber from hibiscus vitifolius plant stalk for polymer composites. J Nat Fibers 19:6961–6976. https://doi.org/10.1080/15440478.2021.1941484

    Article  CAS  Google Scholar 

  77. Gopinath R, Billigraham P, Sathishkumar TP (2023) Characterization studies on new cellulosic fiber extracted from Leucaena Leucocephala tree. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2157922

    Article  Google Scholar 

  78. Siva R, Valarmathi TN, Palanikumar K, Samrot AV (2020) Study on a novel natural cellulosic fiber from Kigelia africana fruit: characterization and analysis. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116494

    Article  Google Scholar 

  79. Yan Z, Chen S, Wang H et al (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohyd Res 343:73–80. https://doi.org/10.1016/j.carres.2007.10.024

    Article  CAS  Google Scholar 

  80. El OA, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose i to cellulose II in NaOH treated Agave americana L. fibre. Carbohyd Polym 86:1221–1229. https://doi.org/10.1016/j.carbpol.2011.06.037

    Article  CAS  Google Scholar 

  81. Moshiul Alam AKM, Beg MDH, Reddy Prasad DM et al (2012) Structures and performances of simultaneous ultrasound and alkali treated oil palm empty fruit bunch fiber reinforced poly(lactic acid) composites. Compos A Appl Sci Manuf 43:1921–1929. https://doi.org/10.1016/j.compositesa.2012.06.012

    Article  CAS  Google Scholar 

  82. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohyd Polym 106:77–83. https://doi.org/10.1016/j.carbpol.2014.02.016

    Article  CAS  Google Scholar 

  83. Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohyd Polym 134:429–437. https://doi.org/10.1016/j.carbpol.2015.08.024

    Article  CAS  Google Scholar 

  84. Nagarajaganesh B, Rengarajan M (2016) Physico-chemical, thermal, and flexural characterization of Cocos nucifera fibers. Int J Polym Anal Charact 21(3):244–250. https://doi.org/10.1080/1023666X.2016.1139359

    Article  CAS  Google Scholar 

  85. Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2018) Thermal properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conf Ser Mater Sci Eng 368(1):012019. https://doi.org/10.1088/1757-899X/368/1/012019

    Article  Google Scholar 

  86. Haddar M, Elloumi A, Koubaa A et al (2018) Synergetic effect of Posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high density polyethylene composites industrial crops & products synergetic effect of Posidonia oceanica fibres and deinking paper sludge on. Ind Crops Prod 121:26–35. https://doi.org/10.1016/j.indcrop.2018.04.075

    Article  CAS  Google Scholar 

  87. Boussetta A, Charii H, Ait Benhamou A et al (2023) Bio-composites based on cellulosic fibers from agro-industrial waste filled PP matrix: production and properties. Polym Bull. https://doi.org/10.1007/s00289-023-04698-5

    Article  Google Scholar 

  88. Rahman WA, Nur S, Sudin A, Din SN (2012) Physical and mechanical properties of Pandanus amaryllifolius fiber reinforced low density polyethylene composite for packaging application. In: 2012 IEEE symposium on humanities, science and engineering research 345–349

  89. Maheshwaran MV, Hyness NRJ, Senthamaraikannan P et al (2018) Characterization of natural cellulosic fiber from Epipremnum aureum stem. J Nat Fibers 15:789–798. https://doi.org/10.1080/15440478.2017.1364205

    Article  CAS  Google Scholar 

  90. Sari NH, Wardana ING, Irawan YS et al (2017) Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. J Nat Fibers 15(4):545–558. https://doi.org/10.1080/15440478.2017.1349707

    Article  CAS  Google Scholar 

  91. Cisneros-López O, Anzaldo J, Fuentes-Talavera FJ et al (2015) Effect of agave fiber surface treatment on the properties of polyethylene composites produced by dry-blending and compression molding. Polym Compos 38(1):96–104

    Article  Google Scholar 

  92. Perić M, Putz R, Paulik C (2019) Influence of nano fibrillated cellulose on the mechanical and thermal properties of poly (lactic acid ). Eur Polym J 114:426–433. https://doi.org/10.1016/j.eurpolymj.2019.03.014

    Article  CAS  Google Scholar 

  93. El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2009) Physico-chemical characterisation and tensile mechanical properties of Agave americana L. fibres. J Text Inst 100(5):430–439. https://doi.org/10.1080/00405000701863350

    Article  CAS  Google Scholar 

  94. Shanmugasundaram N, Rajendran I, Ramkumar T (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohyd Polym 195:566–575. https://doi.org/10.1016/j.carbpol.2018.04.127

    Article  CAS  Google Scholar 

  95. Riaz S, Park SJ (2021) A comparative study on nanoinclusion effect of MoS2 nanosheets and MoS2 quantum dots on fracture toughness and interfacial properties of epoxy composites. Compos A Appl Sci Manuf 146:106419. https://doi.org/10.1016/j.compositesa.2021.106419

    Article  CAS  Google Scholar 

  96. Riaz S, Park SJ (2020) Effective reinforcement of melamine-functionalized WS2 nanosheets in epoxy nanocomposites at low loading via enhanced interfacial interaction. Macromol Res 28:1116–1126. https://doi.org/10.1007/s13233-020-8151-8

    Article  CAS  Google Scholar 

  97. Benhamou A, Boussetta A, Grimi N, El IM (2021) Characteristics of cellulose fibers from opuntia ficus indica cladodes and its use as reinforcement for PET-based composites characteristics of cellulose fibers from opuntia ficus indica cladodes and its use as reinforcement for PET based composites. J Nat Fibers 00:1–17. https://doi.org/10.1080/15440478.2021.1904484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afef Mansouri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, A., Ben Nasr, J. & Ben Amar, M. Biocomposites based on polypropylene and Agave fibers (Agave Americana L): investigation on physical, thermal and mechanical properties. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05317-7

Keywords

Navigation