Log in

Surfaces displaying high hydrophobicity and strong water adhesion by soft-template electropolymerization using di-substituted benzenes as model

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Preparing well-ordered nanotubes on material surface is fundamental for a huge number of applications. Natural surfaces and theoretical approaches show that porous structures such as nanotubes are key parameters for both surface hydrophobicity and water adhesion. Here, a very easy soft-template electropolymerization approach is used to form nanotubes. A solvent of low water-solubility (dichloromethane) is mixed to water in the presence of a surfactant electrolyte for stabilizing the micelles formed in solution. The monomers investigated are thiophene and carbazole derivatives, and are all fully conjugated for favoring the deposition versus polymerization. Indeed, in all the electrodeposited films, the monomer is mostly present as confirmed by cyclic voltammetry. The key parameters in the resulting nanotubes is the monomer structure because a preferential growth is necessary and this one is induced here especially by π-stacking interactions in the direction perpendicular to monomer. The surfaces composed of nanoparticles or nanotubes are the most hydrophobic with an apparent contact angle up to 130.9° accompanied with strong water adhesion, as reported on gecko foot or rose petal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ou Q-D, Zhou L, Li Y-Q, Chen J-D, Li C, Shen S, Tang J-X (2015) Simultaneously enhancing color spatial uniformity and operational stability with deterministic quasi-periodic nanocone arrays for tandem organic light-emitting diodes. Adv Opt Mater 3:87–94

    Article  CAS  Google Scholar 

  2. Dai XB, Wang M, Zhang JZ, **n GM, Wan XY (2022) Vapor condensation on bioinspired hierarchical nanostructured surfaces with hybrid wettabilities. Langmuir 38:11099–11108

    Article  CAS  PubMed  Google Scholar 

  3. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  CAS  Google Scholar 

  4. Qiao Y, Li CM (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036

    Article  CAS  Google Scholar 

  5. Senevirathne SWMAI, Mathew A, Toh Y-C, Yarlagadda PKDV (2022) Bactericidal efficacy of nanostructured surfaces increases under flow conditions. ACS Omega 7:41711–41722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Darmanin T, Guittard F (2014) Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Prog Polym Sci 39:656–682

    Article  CAS  Google Scholar 

  7. Wen G, Guo ZG, Liu WM (2017) Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale 9:3338–3366

    Article  CAS  PubMed  Google Scholar 

  8. Marmur A (2012) Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter 8:6867–6870

    Article  CAS  Google Scholar 

  9. Raufaste C, Ramos Chagas G, Darmanin T, Claudet C, Guittard F, Celestini F (2017) Superpropulsion of droplets and soft elastic solids. Phys Rev Lett 119:108001

    Article  PubMed  Google Scholar 

  10. Tuteja A, Choi WJ, Ma ML, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622

    Article  CAS  PubMed  Google Scholar 

  11. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  12. Cheng ZJ, Gao J, Jiang L (2010) Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir 26:8233–8238

    Article  CAS  PubMed  Google Scholar 

  13. Hu SH, **a ZH, Dai LM (2013) Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes. Nanoscale 5:475–486

    Article  CAS  PubMed  Google Scholar 

  14. Lai YK, Pan F, Xu C, Fuchs H, Chi LF (2013) In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion. Adv Mater 25:1682–1686

    Article  CAS  PubMed  Google Scholar 

  15. Martín J, Maiz J, Sacristan J, Mijangos C (2012) Tailored polymer-based nanorods and nanotubes by “template synthesis”: from preparation to applications. Polymer 53:1149–1166

    Article  Google Scholar 

  16. Gao CB, Zhang Q, Lu ZD, Yin YD (2011) Templated synthesis of metal nanorods in silica nanotubes. J Am Chem Soc 133:19706–19709

    Article  CAS  PubMed  Google Scholar 

  17. Lin H-A, Luo S-C, Zhu B, Chen C, Yamashita Y, Yu H-H (2013) Molecular or nanoscale structures? The deciding factor of surface properties on functionalized poly(3,4-ethylenedioxythiophene) nanorod arrays. Adv Func Mater 23:3212–3219

    Article  CAS  Google Scholar 

  18. Debiemme-Chouvy C, Fakhry A, Pillier F (2018) Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim Acta 268:66–72

    Article  CAS  Google Scholar 

  19. Gupta S (2008) Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. J Raman Spectrosc 39:1343–1355

    Article  CAS  Google Scholar 

  20. Kim JT, Seol SK, Je JH, Hwu Y, Margaritondo G (2009) The microcontainer shape in electropolymerization on bubbles. Appl Phys Lett 94:034103

    Article  Google Scholar 

  21. Qu LT, Shi GQ, Chen F, Zhang JX (2003) Electrochemical growth of polypyrrole microcontainers. Macromolecules 36:1063–1067

    Article  CAS  Google Scholar 

  22. Fradin C, Orange F, Amigoni S, Szczepanski CR, Guittard F, Darmanin T (2021) Micellar formation by soft template electropolymerization in organic solvents. J Colloid Interface Sci 590:260–267

    Article  CAS  PubMed  Google Scholar 

  23. Levieux-Souid Y, Sathanikan A, Orange F, Guittard F, Darmanin T (2021) Densely packed open microspheres by soft template electropolymerization of benzotrithiophene-based monomers. Electrochim Acta 369:137677

    Article  CAS  Google Scholar 

  24. Fradin C, Guittard F, Darmanin T (2021) Designing tunable omniphobic surfaces by controlling the electropolymerization sites of carbazole-based monomers. Macromol Chem Phys 222:2100262

    Article  CAS  Google Scholar 

  25. Sow F, Dramé A, Sow S, Sene A, Orange F, Dieng SY, Guittard F, Darmanin T (2020) Influence of spacer in the formation of nanorings by templateless electropolymerization. Mater Today Chem 17:100278

    Article  CAS  Google Scholar 

  26. Luo S-C, Sekine J, Zhu B, Zhao HC, Nakao A, Yu H-H (2012) Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: the effect of functional groups and temperature in template-free electropolymerization. ACS Nano 6:3018–3026

    Article  CAS  PubMed  Google Scholar 

  27. Fradin C, Guittard F, Perepichka IF, Darmanin T (2022) Soft-template electropolymerization of 3,4-(2,3-naphtylenedioxy)thiophene-2-acetic acid esters favoring dimers: controlling the surface nanostructure by side ester groups. Electrochim Acta 425:140684

    Article  CAS  Google Scholar 

  28. Toyota K, Goto Y, Okada K, Morita N (2007) Preparation of 1,4-bis(2-ethynyl-3-thienyl)benzenes as versatile spacers for connection of heterocycles. Heterocycles 71:2227–2236

    Article  CAS  Google Scholar 

  29. Ouyang M, Wang GH, Zhang YJ, Hua C, Zhang C (2011) Multicolored electrochromic copolymer based on 1,4-di(thiophen-3-yl)benzene and 3,4-ethylenedioxythiophene. J Electroanal Chem 653:21–26

    Article  CAS  Google Scholar 

  30. Yang MO, Wang GH, Yu ZW, Zhang C, Ma CA (2011) Enhancing electrochromic property of 1,4-di(thiophen­3­yl)benzene by copolymerization with pyrene. J Electroanal Chem 295–297:987–990

    Google Scholar 

  31. Jeon JY, Park TJ, Jeon WS, Park JJ, Jang J, Kwon JH, Lee JY (2007) Bipolar host materials for green triplet emitter in organic light-emitting diodes. Chem Lett 36:1156–1157

    Article  CAS  Google Scholar 

  32. Kim M-S, Kim SW, Cho HH, Chu CW, Kim YS, Ito N (2016) Organic light-emitting device, European Patent Organization, EP3010067 A1, 04–20

  33. Park TJ, Jeon WS, Park JJ, Kim SY, Lee YK, Jang J, Kwon JH (2008) Driving voltage reduction and efficiency increase by narrow bandgap host materials in phosphorescent organic light-emitting diodes. Thin Solid Films 517:896–900

    Article  CAS  Google Scholar 

  34. Wee K-R, Cho Y-J, Jeong S, Kwon S, Lee J-D, Suh I-H, Kang SO (2012) Carborane-based optoelectronically active organic molecules: wide band gap host materials for blue phosphorescence. J Am Chem Soc 134:17982–17990

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L-L, Ren H, Zhang Y, Wang R-S, Pan X-M (2013) Theoretical investigations on electronic structures and photophysical properties of N-heteroaryl carbazole derivatives as host materials. Theoret Chem Acc 132:1302

    Article  Google Scholar 

  36. Miyaura N, Suzuki A (1979) Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J Chem Soc Chem Commun 19:866–867

    Article  Google Scholar 

  37. Darmanin T, Laugier J-P, Orange F, Guittard F (2016) Influence of the monomer structure and electrochemical parameters on the formation of nanotubes with parahydrophobic properties (high water adhesion) by a templateless electropolymerization process. J Colloid Interface Sci 466:413–424

    Article  CAS  PubMed  Google Scholar 

  38. Diouf K, Dramé A, Diouf A, Orange F, Guittard F, Perepichka IF, Darmanin T (2023) Directional formation of microtubes by soft-template electropolymerization from fully conjugated triphenylamine-based monomers. J Electroanal Chem 946:117747

    Article  CAS  Google Scholar 

  39. Zhao YC, Stejskald J, Wang JX (2013) Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors. Nanoscale 5:2620–2626

    Article  CAS  PubMed  Google Scholar 

  40. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Google Scholar 

  41. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  42. Wenzel RW (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem Res 20:988–994

    Article  Google Scholar 

Download references

Acknowledgements

The group thanks Christelle Boscagli from the Centre Commun de Microscopie Appliquée (CCMA, Université Côte d’Azur) for the preparation of the substrates necessary for the SEM analyses. This work was supported by CNRS GDR 2088 « BIOMIM ».

Author information

Authors and Affiliations

Authors

Contributions

A. N. performed the monomer synthesis and surface characterization. T. D. did electropolymerization and wrote the manuscript. A. D., A. D. and F. G. acquired the funding for the student and the laboratories. All authors reviewed the manuscript.

Corresponding author

Correspondence to Thierry Darmanin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Data availability

Our data cannot be shared openly but can be asked directly to the corresponding author if necessary.

Conflict of interest

The authors declare no conflict of interests/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niang, A., Dramé, A., Diouf, A. et al. Surfaces displaying high hydrophobicity and strong water adhesion by soft-template electropolymerization using di-substituted benzenes as model. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05280-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05280-3

Keywords

Navigation