Log in

Enhanced solar-driven photocatalytic and photovoltaic performance of polymer composite containing carbon black and calcium titanate nanoparticles

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, pristine calcium titanate (CaTiO3), polyaniline (PANI), binary PANI@carbon black (CB), and ternary PANI@CB/CaTiO3 composites were synthesized using solid-state and in situ oxidative polymerization method. XRD, FTIR, UV–Vis, PL, FE-SEM, and EDX analyses were studied in order to examine the structural, optical, and morphological properties of all grown samples. XRD, FTIR, FESEM, and EDX findings confirmed the formation of successful chemical organization among PANI, CaTiO3, and CB. The UV–Vis and PL investigation reaffirmed the reduction in optical band gap (2.67 eV–2.56 eV) and charge carrier recombination process due to inclusion of CaTiO3 into CB-reinforced polymer matrix. In photocatalytic experiment, PANI@CB/10%CaTiO3 catalyst showed efficacious performance to degrade the synthetic dyes (99.7% MO and 97.8% MB) after 120-min sunlight irradiation with higher rate and superb stability up-to 5th cycle against MO dye. In kinetic examination, pseudo-first-order kinetic model was obeyed by both dyes. Herein, the bulk heterojunction (BHJ) photovoltaic cell was fabricated by spin-coating the grown samples on FTO glass substrate and thermally evaporating the Al electrode subsequently. The BHJ fabricated by PANI@CB/10%CaTiO3 showed better efficiency (0.541%), photocurrent density (Jsc) (4.21 mA/cm2), and open-circuit voltage (Voc) (0.39 V).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. Raizada P, Singh P, Kumar A, Pare B, Jonnalagadda SB (2014) Zero valent iron-brick grain nanocomposite for enhanced solar-fenton removal of malachite green. Sep Purif Technol 133:429–437

    CAS  Google Scholar 

  2. Faisal M, Ahmed J, Algethami JS, Jalalah M, Alsareii SA, Alsaiari M, Harraz FA (2023) Visible-light responsive Au nanoparticle-decorated polypyrrole-carbon black/SnO2 ternary nanocomposite for ultrafast removal of insecticide imidacloprid and methylene blue. J Ind Eng Chem 121:287–298

    CAS  Google Scholar 

  3. Uesugi Y, Nagakawa H, Nagata M (2022) Highly Efficient photocatalytic degradation of hydrogen sulfide in the gas phase using anatase/TiO2(B) nanotubes. ACS Omega 7:11946–11955

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Priya B, Raizada P, Singh N, Thakur P, Singh P (2016) Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan. J Colloid Interface Sci 479:271–283

    CAS  PubMed  Google Scholar 

  5. Yan Y, Yang H, Zhao X, Li R, Wang X (2018) Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater Res Bull 105:286–290

    CAS  Google Scholar 

  6. Zhao X, Yang H, Li R, Cui Z, Liu X (2019) Synthesis of heterojunction photocatalysts composed of Ag2S quantum dots combined with Bi4Ti3O12 nanosheets for the degradation of dyes. Environ Sci Pollut Res 26:5524–5538

    CAS  Google Scholar 

  7. **a Y, He Z, Su J, Liu Y, Tang B (2018) Fabrication and photocatalytic property of novel SrTiO3/Bi5O7I nanocomposites. Nanoscale Res Lett 13:1–9

    Google Scholar 

  8. Dong W, Song B, Meng W, Zhao G, Han G (2015) A simple solvothermal process to synthesize CaTiO3 microspheres and its photocatalytic properties. Appl Surf Sci 349:272–278

    CAS  Google Scholar 

  9. Shen P, Lofaro JC Jr, Woerner WR, White MG, Su D, Orlov A (2013) Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. J Chem Eng 223:200–208

    CAS  Google Scholar 

  10. Lee WW, Chung W-H, Huang W-S, Lin W-C, Lin W-Y, Jiang Y-R, Chen C-C (2013) Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method. J Taiwan Inst Chem Eng 44:660–669

    CAS  Google Scholar 

  11. Yan Y, Yang H, Yi Z, Li R, Wang X (2019) Enhanced photocatalytic performance and mechanism of Au@ CaTiO3 composites with Au nanoparticles assembled on CaTiO3 nanocuboids. Micromachines 10:254

    PubMed  PubMed Central  Google Scholar 

  12. Li L, Chen X, Quan X, Qiu F, Zhang X (2023) Synthesis of CuOx/TiO2 photocatalysts with enhanced photocatalytic performance. ACS Omega 8:2723–2732

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JS (2005) Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal Surv Asia 9:217–227

    CAS  Google Scholar 

  14. Ahmad AA, Bani-Salameh AA, Al-Bataineh QM, Jum’h I, Telfah AD (2023) Optical, structural and morphological properties of synthesized PANI-CSA-PEO-based GaN nanocomposite films for optoelectronic applications. Polym Bull 80:809–828

    CAS  Google Scholar 

  15. Kumar V, Mirzaei A, Bonyani M, Kim K-H, Kim HW, Kim SS (2020) Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia. TrAC Trends Anal Chem 129:115938

    CAS  Google Scholar 

  16. Elumalai P, Charles J (2023) Investigation of structural and optical properties of ternary polyaniline–polypyrrole–nickel oxide (PANI‐PPy‐NiO) nanocomposite for optoelectronic devices. Polym Int 72:176–188

    CAS  Google Scholar 

  17. Wu Y-L, Lin J-J, Lin S-H, Sung Y-H (2017) Double-trap model for hysteretic current-voltage characteristics of a polystyrene/ZnO nanorods stacked layer. Solid-State Electron 137:58–61

    CAS  Google Scholar 

  18. Bekhoukh A, Kiari M, Moulefera I, Sabantina L, Benyoucef A (2023) New hybrid adsorbents based on polyaniline and polypyrrole with silicon dioxide: synthesis, characterization, kinetics, equilibrium, and thermodynamic studies for the removal of 2, 4-dichlorophenol. Polymers 15:2032

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saha S, Chaudhary N, Kumar A, Khanuja M (2020) Polymeric nanostructures for photocatalytic dye degradation: polyaniline for photocatalysis. SN Appl Sci 2:1–10

    Google Scholar 

  20. Sharma AK, Chaudhary G, Kaushal I, Bhardwaj U, Mishra A (2015) Studies on nanocomposites of polyaniline using different substrates. Am J Polym Sci 1:1–6

    Google Scholar 

  21. Kong F, Wang Y, Zhang J, **a H, Zhu B, Wang Y, Wang S, Wu S (2008) The preparation and gas sensitivity study of polythiophene/SnO2 composites. Mater Sci Eng B 150:6–11

    CAS  Google Scholar 

  22. Tang Q, Lin L, Mao Z, Wu J (2012) p–n heterojunction on dye-sensitized ZnO nanorod arrays and macroporous polyaniline network. RSC Adv 2:1863–1869

    CAS  Google Scholar 

  23. Tao L, Wang J, Luo Z, Ren J, Yin D (2023) Fabrication of an S-scheme heterojunction photocatalyst MoS2/PANI with greatly enhanced photocatalytic performance. Langmuir 39:11426–11438

    CAS  PubMed  Google Scholar 

  24. Ng WC, Saha T, Ilankoon I, Chong MN (2022) Design and construction of a novel hierarchical Ag/{1 1 1} Ag3PO4/PANI/Pt photoanode with boosted interfacial charge transfer rate and high photocurrent density> 16 mA/cm2 for sunlight-driven water splitting. Energy Convers Manag 271:116298

    CAS  Google Scholar 

  25. Wang X, Zhang J, Zhang K, Zou W, Chen S (2016) Facile fabrication of reduced graphene oxide/CuI/PANI nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv 6:44851–44858

    CAS  Google Scholar 

  26. Bhaumik M, McCrindle RI, Maity A (2015) Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers. Chem Eng J 260:716–729

    CAS  Google Scholar 

  27. Ghazanlou SI, Eghbali B, Petrov R (2021) Microstructural evolution and strengthening mechanisms in Al7075/graphene nano-plates/carbon nano-tubes composite processed through accumulative roll bonding. Mater Sci Eng A 807:140877

    CAS  Google Scholar 

  28. Talukdar M, Deb P (2022) Recent progress in research on multifunctional graphitic carbon nitride: an emerging wonder material beyond catalyst. Carbon 192:308–331

    CAS  Google Scholar 

  29. Gholami P, Heidari A, Khataee A, Ritala M (2023) Oxygen and nitrogen plasma modifications of ZnCuCo LDH-graphene nanocomposites for photocatalytic hydrogen production and antibiotic degradation. Sep Purif Technol 325:124706

    CAS  Google Scholar 

  30. Basavaraj N, Sekar A, Yadav R (2021) Review on green carbon dot-based materials for the photocatalytic degradation of dyes: fundamentals and future perspective. Mater Adv 2:7559–7582

    CAS  Google Scholar 

  31. Marques Lameirinhas RA, Torres JPN, de Melo CJP (2022) A photovoltaic technology review: history, fundamentals and applications. Energies 15:1823

    CAS  Google Scholar 

  32. Sun Z, He Y, **ong B, Chen S, Li M, Zhou Y, Zheng Y, Sun K, Yang C (2021) Performance‐enhancing approaches for PEDOT: PSS‐Si hybrid solar cells. Angew Chem Int Ed Engl 60:5036–5055

    CAS  PubMed  Google Scholar 

  33. Yan L, Han C, Shi B, Zhao Y, Zhang X (2019) A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells. Mater Today Nano 7:100045

    Google Scholar 

  34. Almuntaser FM, Baviskar PK, Majumder S, Tarkas HS, Sali JV, Sankapal BR (2019) Role of polyaniline thickness in polymer-zinc oxide based solid state solar cell. Mater Sci Eng B 244:23–28

    CAS  Google Scholar 

  35. Zaidan K, Hussein H, Talib R, Hassan A (2011) Synthesis and characterization of (Pani/n-si) solar cell. Energy Procedia 6:85–91

    CAS  Google Scholar 

  36. Yang H, Han C, Xue X (2014) Photocatalytic activity of Fe-doped CaTiO3 under UV–visible light. J Environ Sci 26:1489–1495

    CAS  Google Scholar 

  37. Reddy KR, Sin BC, Ryu KS, Noh J, Lee Y (2009) In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Met 159:1934–1939

    CAS  Google Scholar 

  38. Roy AS, Hegde SG, Parveen A (2014) Synthesis, characterization, AC conductivity, and diode properties of polyaniline–CaTiO3 composites. Polym Adv Technol 25:130–135

    CAS  Google Scholar 

  39. Gebreegziabher GG, Asemahegne AS, Ayele DW, Mani D, Narzary R, Sahu PP, Kumar A (2020) Polyaniline–graphene quantum dots (PANI–GQDs) hybrid for plastic solar cell. Carbon Lett 30:1–11

    Google Scholar 

  40. Majumder S, Baviskar PK, Sankapal BR (2016) Straightening of chemically deposited CdS nanowires through annealing towards improved PV device performance. Ceram Int 42:6682–6691

    CAS  Google Scholar 

  41. Parveen A, Kumar KA, Revanasidappa M, Ekhilikar S, Ambika Prasad MN (2008) Dielectric spectroscopy of PANI-CaTiO3 composites. Ferroelectrics 377:63–74

    CAS  Google Scholar 

  42. Quillard S, Louarn G, Lefrant S, MacDiarmid A (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B 50:12496

    CAS  Google Scholar 

  43. Rezaei SJT, Bide Y, Nabid MR (2011) A new approach for the synthesis of polyaniline microstructures with a unique tetragonal star-like morphology. Synth Met 161:1414–1419

    CAS  Google Scholar 

  44. Zhang C, Kong X, Liu W, Yang J, Zhao H (2021) Regulation of PANI nanofiber conductivity and its influence on the DC dielectric properties of LDPE. Polym Test 101:107299

    CAS  Google Scholar 

  45. Yue H-R, Cheng G-J, Liu J-X, Xue X-X, Zhang W-J (2022) Formation characteristics of CaTiO3 in the vicinity of the calcium ferrite/TiO2 interface. Powder Technol 409:117821

    CAS  Google Scholar 

  46. Mousavi S (2014) The effect of sintering time on the electrical properties of CaTiO3 ceramics. Dig J Nanomater Biostruct 9:1059–1063

    Google Scholar 

  47. Yao J, Chen L, Zhu Q, Li JG (2023) Pressureless sintering of LRH nanoplates on amorphous alumina for near‐infrared GAP: Mn4+ transparent ceramic film. J Am Ceram Soc 106:1870–1880

    CAS  Google Scholar 

  48. Singh SK, Shukla R, Kumar R, Tripathi U, Mishra SK (2022) Investigation on PANI/CuO nanocomposites for ammonia gas sensing applications. Mater Lett 309:131325

    CAS  Google Scholar 

  49. Kamran M, Shah AUHA, Rahman G, Bilal S (2022) Investigation of alumina-doped Prunus domestica gum grafted polyaniline epoxy resin for corrosion protection coatings for mild steel and stainless steel. Polymers 14:3116

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Elamin NY, Modwi A, Abd El-Fattah W, Rajeh A (2023) Synthesis and structural of Fe3O4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel poly (methyl methacrylate)/polyaniline composite for electromagnetic and optical applications. Opt Mater 135:113323

    CAS  Google Scholar 

  51. Li Q, **a Y, Wei K, Ding X, Dong S, Jiao X, Chen D (2019) Ferroelectric enhanced Z-scheme P-doped gC3N4/PANI/BaTiO3 ternary heterojunction with boosted visible-light photocatalytic water splitting. New J Chem 43:6753–6764

    CAS  Google Scholar 

  52. Luo M, Xu J, Xu W, Zheng Y, Wu G, Jeong T (2023) Photocatalytic activity of MoS2 nanoflower-modified CaTiO3 composites for degradation of RhB under visible light. Nanomaterials 13:636

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sabu NA, Francis X, Anjaly J, Sankararaman S, Varghese T (2017) Enhanced structural and optical properties of the polyaniline-calcium tungstate (PANI-CaWO4 nanocomposite for electronics applications. Eur Phys J Plus 132:1–7

    CAS  Google Scholar 

  54. Yu X, Lin Y, Liu H, Yang C, Peng Y, Du C, Wu S, Li X, Zhong Y (2020) Photocatalytic performances of heterojunction catalysts of silver phosphate modified by PANI and Cr-doped SrTiO3 for organic pollutant removal from high salinity wastewater. J Colloid Interface Sci 561:379–395

    CAS  PubMed  Google Scholar 

  55. Ahmed SU, Akter F, Oliullah M, Chowdhury MSH, Talukder MM, Pramanik SK, Younus M, Rahman Khan MM (2019) Role of reaction time on the electrical conductivity, thermal stability and photoluminescence property of polyanilne nanofibers. Int J Chem React Eng 18:20190088

    Google Scholar 

  56. Rohom AB, Londhe PU, Mahapatra S, Kulkarni S, Chaure N (2014) Electropolymerization of polyaniline thin films. High Perform Polym 26:641–646

    Google Scholar 

  57. **an T, Yang H, Huo Y (2014) Enhanced photocatalytic activity of CaTiO3-graphene nanocomposites for dye degradation. Phys Scr 89:115801

    Google Scholar 

  58. Bekhoukh A, Moulefera I, Zeggai FZ, Benyoucef A, Bachari K (2022) Anionic methyl orange removal from aqueous solutions by activated carbon reinforced conducting polyaniline as adsorbent: synthesis, characterization, adsorption behavior, regeneration and kinetics study. J Polym Environ 30:886–895

    CAS  Google Scholar 

  59. Feng T, Yin H, Jiang H, Chai X, Li X, Li D, Wu J, Liu X, Sun B (2019) Design and fabrication of polyaniline/Bi2MoO6 nanocomposites for enhanced visible-light-driven photocatalysis. New J Chem 43:9606–9613

    CAS  Google Scholar 

  60. Faisal M, Rashed MA, Ahmed J, Alsaiari M, Jalalah M, Alsareii S, Harraz FA (2022) Au nanoparticles decorated polypyrrole-carbon black/g-C3N4 nanocomposite as ultrafast and efficient visible light photocatalyst. Chemosphere 287:131984

    CAS  PubMed  Google Scholar 

  61. Usman M, Adnan M, Ali S, Javed S, Akram MA (2020) Preparation and characterization of PANI@ NiO visible light photocatalyst for wastewater treatment. ChemistrySelect 5:12618–12623

    CAS  Google Scholar 

  62. Shirmardi A, Teridi MAM, Azimi HR, Basirun WJ, Jamali-Sheini F, Yousefi R (2018) Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants. Appl Surf Sci 462:730–738

    CAS  Google Scholar 

  63. Ameen S, Akhtar MS, Kim YS, Yang O-B, Shin H-S (2011) An effective nanocomposite of polyaniline and ZnO: preparation, characterizations, and its photocatalytic activity. Colloid Polym Sci 289:415–421

    CAS  Google Scholar 

  64. Park Y, Numan A, Ponomarev N, Iqbal J, Khalid M (2021) Enhanced photocatalytic performance of PANI-rGO-MnO2 ternary composite for degradation of organic contaminants under visible light. J Environ Chem Eng 9:106006

    CAS  Google Scholar 

  65. Vijayalakshmi S, Kumar E, Ganeshbabu M, Venkatesh PS, Rathnakumar K (2021) Structural, electrical, and photocatalytic investigations of PANI/ZnO nanocomposites. Ionics 27:2967–2977

    CAS  Google Scholar 

  66. Sakib AAM, Masum SM, Hoinkis J, Islam R, Molla MAI (2019) Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J Compos Sci 3:91

    Google Scholar 

  67. Shahabuddin S, Mehmood S, Ahmad I, Sridewi N (2022) Synthesis and characterization of 2D-WS2 incorporated polyaniline nanocomposites as photo catalyst for methylene blue degradation. Nanomaterials 12:2090

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shahabuddin S, Khanam R, Khalid M, Sarih NM, Ching JJ, Mohamad S, Saidur R (2018) Synthesis of 2D boron nitride doped polyaniline hybrid nanocomposites for photocatalytic degradation of carcinogenic dyes from aqueous solution. Arab J Chem 11:1000–1016

    CAS  Google Scholar 

  69. Shankar EG, Aishwarya M, Khan A, Kumar AK, Yu JS (2021) Efficient solar light photocatalytic degradation of commercial pharmaceutical drug and dye using rGO-PANI assisted c-ZnO heterojunction nanocomposites. Ceram Int 47:23770–23780

    Google Scholar 

  70. Shahabuddin S, Sarih NM, Afzal Kamboh M, Rashidi Nodeh H, Mohamad S (2016) Synthesis of polyaniline-coated graphene oxide@SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers 8:305

    PubMed  PubMed Central  Google Scholar 

  71. Guleria A, Sharma R, Singh A, Upadhyay NK, Shandilya P (2021) Direct dual-Z-scheme PANI/Ag2O/Cu2O heterojunction with broad absorption range for photocatalytic degradation of methylene blue. J Water Process Eng 43:102305

    Google Scholar 

  72. Feizpoor S, Habibi-Yangjeh A, Yubuta K, Vadivel S (2019) Fabrication of TiO2/CoMoO4/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light. Mater Chem Phys 224:10–21

    CAS  Google Scholar 

  73. Mukhtar F, Munawar T, Nadeem MS, Khan SA, Koc M, Batool S, Hasan M, Iqbal F (2022) Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. Adv Powder Technol 33:103708

    CAS  Google Scholar 

  74. Yılmaz S, Ünverdi A, Tomakin M, Polat İ, Bacaksız E (2019) Surface modification of CBD-grown CdS thin films for hybrid solar cell applications. Optik 185:256–263

    Google Scholar 

  75. Jameel DA (2021) Electrical performance of organic/inorganic hybrid solar cell devices based on n-type GaAs substrate orientations and a conjugated polymer (PANI). Appl Phys A 127:570

    CAS  Google Scholar 

  76. Geethalakshmi D, Muthukumarasamy N, Balasundaraprabhu R (2016) CSA-doped PANI/TiO2 hybrid BHJ solar cells–material synthesize and device fabrication. Mater Sci Semicond Process 51:71–80

    CAS  Google Scholar 

  77. Yarmohamadi-Vasel M, Modarresi-Alam AR, Noroozifar M, Hadavi MS (2019) An investigation into the photovoltaic activity of a new nanocomposite of (polyaniline nanofibers)/(titanium dioxide nanoparticles) with different architectures. Synth Met 252:50–61

    CAS  Google Scholar 

  78. Cook S, Furube A, Katoh R (2012) Matter of minutes degradation of poly (3-hexylthiophene) under illumination in air. J Mater Chem 22:4282–4289

    CAS  Google Scholar 

  79. Chambon S, Rivaton A, Gardette J-L, Firon M (2011) Photo-and thermo-oxidation of poly (p-phenylene-vinylene) and phenylene-vinylene oligomer. Polym Degrad Stab 96:1149–1158

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AB and AS were involved in the conceptualization, formal analysis, funding acquisition, investigation, methodology, project administration, resources, writing-original draft and data curation. NAN, MR, MS contributed to the data curation, software, visualization, and writing—original draft. ZU assisted in writing—review and editing.

Corresponding author

Correspondence to Ariba Bibi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, A., Shakoor, A., Niaz, N.A. et al. Enhanced solar-driven photocatalytic and photovoltaic performance of polymer composite containing carbon black and calcium titanate nanoparticles. Polym. Bull. 81, 8359–8382 (2024). https://doi.org/10.1007/s00289-023-05108-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05108-6

Keywords

Navigation