Log in

The recent development of silk fibroin in angiogenesis

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) has been utilized in various applications, including as, in bone, cartilage, nerve, skin regeneration, owing to its biocompatibility, controllable biodegradability, minimal inflammation, and tunable mechanical properties. Excellent neovascularization of silk matrices is prerequisite for the success of promoting wound healing in different tissues. Neovascularization of SF can provide a nutrient supply to the newly developed granulation tissue at the wound site and accelerate vessel formation and remodeling. In this review, we summarize the neovascularization of SF in different forms and dissolution by recombining different composites, modifying active peptides, and adding growth factors in the treatment of various wound healing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin XT, Tang FY, Jiang SY, Khamis H, Bongers A, Whitelock JM, Lord MS, Rnjak-Kovacina J (2020) A biomimetic approach toward enhancing angiogenesis: recombinantly expressed domain V of human perlecan is a bioactive molecule that promotes angiogenesis and vascularization of implanted biomaterials. Adv Sci (Weinh) 7(17):2000900

    CAS  PubMed  Google Scholar 

  2. Li SS, Li L, Guo CR, Qin HH, Yu XX (2017) A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: strontium loaded silk fibroin/sodium alginate (SF/SA) blend films. Int J Biol Macromol 104(Pt A):969–978

    CAS  PubMed  Google Scholar 

  3. Patil PP, Reagan MR, Bohara RA (2020) Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings[J]. Int J Biol Macromol 164:4613–4627

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang XH, Masuhiro T, Morikawa H, Aojima K, Zhang GY, Mikihiko M (2011) Production of silk sericin/silk fibroin blend nanofibers. Nanoscale Res Lett 6(1):510

    ADS  PubMed  PubMed Central  Google Scholar 

  5. Ming JF, Zuo BQ (2012) Silk I structure formation through silk fibroin self-assembly[J]. J Appl Polym Sci 125(3):2148–2154

    CAS  Google Scholar 

  6. Cheng BC, Yan YF, Qi JJ, Deng LF, Shao ZW, Zhang KQ, Li B, Sun ZL, Li MM (2018) Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering [J]. ACS Appl Mater Interfaces 10(15):12474–12484

    CAS  PubMed  Google Scholar 

  7. Li H, Tian J, Wu AQ, Wang JM, Ge CC, Sun ZL (2016) Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma[J]. Int J Nanomed 11:4373–4380

    CAS  Google Scholar 

  8. Sun ZL, Li H, Tian J, Wu A, Wang J, Ge C, Sun Z (2016) Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma. Int J Nanomed 11:4373–4380

    Google Scholar 

  9. Wang X, Wang JM, Zhou YN (2022) Extraction process of silk fibroin based on calcium alcohol system[J]. Print Dye 48(02):36–40

    Google Scholar 

  10. Zheng ZZ, Guo SZ, Liu YW, Wu JB, Li G, Liu M, Wang XQ, David K (2016) Lithium-free processing of silk fibroin. J Biomater Appl 31(3):450–463

    PubMed  Google Scholar 

  11. Shen TT, Wang T, Cheng GT, Huang L, Chen L, Wu DY (2018) Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: from morphology to nanostructure. Int J Biol Macromol 113:458–463

    CAS  PubMed  Google Scholar 

  12. Zhao CH, Yao JM, Masuda H, Kishore R, Asakura T (2003) Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Biopolymers 69(2):253–259

    CAS  PubMed  Google Scholar 

  13. Yao JM, Masuda H, Zhao CH, Asakura T (2002) Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules 35(1):6–9

    ADS  CAS  Google Scholar 

  14. Ohgo K, Zhao CH, Kobayashi M, Asakura T (2003) Preparation of nonwoven nanofibers of Bombyx mori silk, Samia cynthiaricini silk and recombinant hybrid silk with electrospinning method. Polymer 44(3):841–846

    CAS  Google Scholar 

  15. Zhang F, You XR, Dou H, Liu Z, Zuo BQ, Zhang XG (2015) Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution[J]. ACS Appl Mater Interfaces 7(5):3352–3361

    CAS  PubMed  Google Scholar 

  16. Zhang X, Tsukada M, Morikawa H, Aojima K, Zhang G, Miura M (2011) Production of silk sericin/silk fibroin blend nanofibers. Nanoscale Res Lett 6(1):510

    ADS  PubMed  PubMed Central  Google Scholar 

  17. Ling SJ, Qin Z, Li CM, Huang WW, Kaplan DL, Buehler MJ (2017) Polymorphic regenerated silk fibers assembled through bioinspired spinning[J]. Nat Commun 8(1):1387

    ADS  PubMed  PubMed Central  Google Scholar 

  18. Li XR, Ming JF, Ning X (2019) Wet spun conductive silk fibroin polyaniline filaments prepared from a formic acid shell solution. J Appl Polym Sci 136(9):47127

    Google Scholar 

  19. Wang HY, Zhang YQ, Wei ZG (2020) Excess acetone extraction in silk protein solution greatly accelerates the regeneration progress of silk fibroin for desalting and purification. Int J Biol Macromol 146:588–595

    CAS  PubMed  Google Scholar 

  20. Wang MM, Han QQ (2021) Preparation method of silk fibroin and its application in field of biomedical materials. Zhongguo Yi Liao Qi **e Za Zhi 45(3):301–304

    PubMed  Google Scholar 

  21. Dunne LW, Iyyanki T, Hubenak J, Mathur AB (2014) Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications. Acta Biomater 10(8):3630–3640

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chouhan D, Lohe T-U, Samudrala PK, Mandal BB (2018) In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds[J]. Adv Healthcare Mater 7(24):1801092

    Google Scholar 

  23. Zhan KH, Bai L, Wang GQ, Zuo BQ, **e L, Wang XH (2018) Different angiogenesis modes and endothelial responses in implanted porous biomaterials[J]. Integr Biol: Quant Biosci Nano Macro 10(7):406–418

    CAS  Google Scholar 

  24. Sun Z, Bai L (2011) Analysis of neovascularization after implanting porous silk fibroin films in rats. Biomed Mater Eng 21(4):259–270

    CAS  PubMed  Google Scholar 

  25. Wang YQ, Yao DY, Li LH, Qian ZY, He W, Ding R, Liu HF, Fan YB (2020) Effect of electrospun silk fibroin-silk sericin films on macrophage polarization and vascularization. ACS Biomater Sci Eng 6(6):3502–3512

    CAS  PubMed  Google Scholar 

  26. Wang W, Liu Y, Yang C, Jia WT, Qi X, Liu CS, Li XL (2020) Delivery of salvianolic acid B for efficient osteogenesis and angiogenesis from silk fibroin combined with graphene oxide. ACS Biomater Sci Eng 6(6):3539–3549

    CAS  PubMed  Google Scholar 

  27. Chouhan D, Janani G, Chakraborty B, Nandi SK, Mandal BB (2018) Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodeling. J Tissue Eng Regen Med 12(3):e1559–e1570

    CAS  PubMed  Google Scholar 

  28. Gupta V, Davis G, Gordon A, Altman AM, Reece GP, Gascoyne PR, Mathur AB (2010) Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds[J]. J Biomed Mater Res Part A 94(2):515–523

    Google Scholar 

  29. Akturk O, Kismet K, Yasti AC, Kurun S, Duymus ME, Kaya F, Caydere M, Hucumenoglu S, Keskin D (2016) Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications. RSC Adv 6(16):13234–13250

    ADS  CAS  Google Scholar 

  30. Qian ZY, Bai YT, Zhou J, Li LH, Na J, Fan YB, Guo XM, Liu HF (2020) A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds[J]. J Mater Chem B 8(32):7197–7212

    CAS  PubMed  Google Scholar 

  31. Stoppato M, Stevens HY, Carletti E, Migliaresi C, Motta A, Guldberg RE (2013) Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds[J]. Biomaterials 34(19):4573

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan SQ, Zhang Q, Wang JN, Liu Y, Lu SZ, Li MZ, Kaplan DL (2013) Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomater 9(6):6771–6782

    CAS  PubMed  Google Scholar 

  33. Yan SQ, Wang QS, Tariq Z, You RC, Li XF, Li MZ, Zhang Q (2018) Facile preparation of bioactive silk fibroin/hyaluronic acid hydrogels. Int J Biol Macromol 118:775–782

    CAS  PubMed  Google Scholar 

  34. Nakamura M, Soya T, Hiratai R, Nagai A, Hashimoto K, Morita I, Yamashita K (2012) Endothelial cell migration and morphogenesis on silk fibroin scaffolds containing hydroxyapatite electret. J Biomed Mater Res A 100(4):969–977

    PubMed  Google Scholar 

  35. Yan JL, **a DD, Zhou WH, Li YY, **ong P, Li QY, Wang P, Li M, Zheng YF, Cheng Y (2020) pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomater 115:220–234

    CAS  PubMed  Google Scholar 

  36. Wang X, Gu ZP, Jiang B, Li L, Yu XX (2016) Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Biomater Sci 4(4):678–688

    CAS  PubMed  Google Scholar 

  37. Fu Q, **a B, Huang X, Wang FP, Chen ZM, Chen GB (2021) Pro-angiogenic decellularized vessel matrix gel modified by silk fibroin for rapid vascularization of tissue engineering scaffold. J Biomed Mater Res A 109(9):1701–1713

    CAS  PubMed  Google Scholar 

  38. Wang CY, Jia YC, Yang WC, Zhang C, Zhang KH, Chai YM (2018) Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J Biomed Mater Res A 106(7):2070–2077

    CAS  PubMed  Google Scholar 

  39. Shan YH, Peng LH, Liu X, Chen X, **ong J, Gao JQ (2015) Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int J Pharm 479(2):291–3011

    CAS  PubMed  Google Scholar 

  40. Rameshbabu AP, Bankoti K, Datta S, Subramani E, Apoorva A, Ghosh P, Maity PP, Manchikanti P, Chaudhury K, Dhara S (2018) Silk sponges ornamented with a placenta-derived extracellular matrix augment full-thickness cutaneous wound healing by stimulating neovascularization and cellular migration. ACS Appl Mater Interfaces 10(20):16977–16991

    CAS  PubMed  Google Scholar 

  41. Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, Hofmann A, Motta A, Migliaresi C, Kirkpatrick CJ (2009) Dynamic processes involved in the prevascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells[J]. Biomaterials 30(7):1329–1338

    CAS  PubMed  Google Scholar 

  42. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ (2004) Endothelialization of a nonwoven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells[J]. Biomaterials 25(21):5137–5146

    CAS  PubMed  Google Scholar 

  43. Samal J, Weinandy S, Weinandy A, Helmedag M, Rongen L, Hermanns-Sachweh B, Kundu SC, Jockenhoevel S (2015) Co-culture of human endothelial cells and foreskin fibroblasts on 3d silk-fibrin scaffolds supports vascularization[J]. Macromol Biosci 15(10):1433–1446

    CAS  PubMed  Google Scholar 

  44. Ghanaati S, Unger RE, Webber MJ, Barbeck M, Orth C, Kirkpatrick JA, Booms P, Motta A, Migliaresi C, Sader RA, Kirkpatrick CJ (2011) Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells[J]. Biomaterials 32(32):8150–8160

    CAS  PubMed  Google Scholar 

  45. Zhang WJ, Wray LS, Rnjak-Kovacina J, Xu L, Zou DH, Wang SY, Zhang ML, Dong JC, Li GL, Kaplan DL, Jiang XQ (2015) Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration[J]. Biomaterials 56:68–77

    CAS  PubMed  Google Scholar 

  46. Li XF, Li MZ (2017) Silk fibron scaffords with a micro/nanofibrous archtecture for promoting vascularization and dermal regeneration[D]. Soochow University

  47. Han HY, Ning HY, Liu SS, Prof LuQ, Fan ZH, Lu HJ, Lu GZ, Kaplan DL (2016) Silk biomaterials with vascularization capacity. Adv Funct Mater 26(3):421–436

    CAS  PubMed  Google Scholar 

  48. Yao DY, Peng G, Qian ZY, Niu YM, Liu HF, Fan YB (2017) Regulating coupling efficiency of REDV by controlling silk fibroin structure for vascularization. ACS Biomater Sci Eng 3(12):3515–3524

    CAS  PubMed  Google Scholar 

  49. Yao DY, Qian ZY, Zhou J, Peng G, Zhou G, Liu HF, Fan YB (2018) Facile incorporation of REDV into porous silk fibroin scaffolds for enhancing vascularization of thick tissues[J]. Mater Sci Eng C 93:96–105

    CAS  Google Scholar 

  50. Gersthagen T, Schmuck C, Schrader T (2010) Artificial RGD receptor molecules[J]. Supramol Chem 22(11–12):853–861

    CAS  Google Scholar 

  51. Lin XT, Tang FY, Jiang SY, Khamis H, Bongers A, Whitelock JM, Lord MS, Rnjak-Kovacina J (2020) A biomimetic approach toward enhancing angiogenesis: recombinantly expressed domain v of human perlecan is a bioactive molecule that promotes angiogenesis and vascularization of implanted biomaterials[J]. Adv Sci 7(17):2000900

    CAS  Google Scholar 

  52. Shimada K, Honda T, Kato K, Hori R, Ujike N, Uemura A, Murakami T, Kitpipatkun P, Nakazawa Y, Tanaka R (2020) Silk fibroin-based vascular repairing sheet with angiogenic-promoting activity of SVVYGLR peptide regenerated the damaged vascular in rats. J Biomater Appl 37(1):3–11

    PubMed  Google Scholar 

  53. Hamada Y, Yuki K, Okazaki M, Fujitani W, Matsumoto T, Hashida MK, Harutsugu K, Nokihara K, Daito M, Matsuura N, Takahashi J (2004) Osteopontin-derived peptide SVVYGLR induces angiogenesis in vivo[J]. Dent Mater J 23(4):650–655

    CAS  PubMed  Google Scholar 

  54. Zhang Q, Yan SQ, You R, Kaplan DL, Liu Y, Qu J, Li XF, Li MZ, Wang X (2016) Multichannel silk protein/laminin grafts for spinal cord injury repair[J]. J Biomed Mater Res Part A 104(12):3045–3057

    CAS  Google Scholar 

  55. Li J, Cui T (2019) 442 Laminin alpha 5 in skin microvascular endothelial cell function and angiogenesis[J]. J Investig Dermatol 139(5):S76–S76

    Google Scholar 

  56. Chouhan D, Thatikonda N, Nileback L, Widhe M, Hedhammar M, Mandal B (2018) Recombinant spider silk functionalized silkworm silk matrices as potential bioactive wound dressings and skin grafts. ACS Appl Mater Interfaces 10(28):23560–23572

    CAS  PubMed  Google Scholar 

  57. Saotome T, Hayashi H, Tanaka R, Kinugasa A, Uesugi S, Tatematsu KI, Sezutsu H, Kuwabara N, Asakura T (2015) Introduction of VEGF or RGD sequences improves revascularization properties of Bombyx mori silk fibroin produced by transgenic silkworm. J Mater Chem B 3(35):7109–7116

    CAS  PubMed  Google Scholar 

  58. Baba A, Matsushita S, Kitayama K, Asakura T, Sezutsu H, Tanimoto A, Kanekura T (2019) Silk fibroin produced by transgenic silkworms overexpressing the Arg-Gly-Asp motif accelerates cutaneous wound healing in mice. J Biomed Mater Res B Appl Biomater 107(1):97–103

    CAS  PubMed  Google Scholar 

  59. Yu YN, Li MZ, Yang JC (2015) Vascularization of porous silk fibroin scaffold with loading of VEGF165 and Ang-1 mediated by RGD-modified adenovirus[D]. Soochow University.

  60. Wang WW, Yu YN, Jiang Y, Qu J, Niu LX, Yang JC, Li MZ (2019) Silk fibroin scaffolds loaded with angiogenic genes in adenovirus vectors for tissue regeneration. J Tissue Eng Regen Med 13(5):715–728

    CAS  PubMed  Google Scholar 

  61. Liu Y, Li MZ, Yang JC (2015) Study on the construction of the silk fibroin scaffolds encoding gene for angiogenesis and its effect on dermal regeneration[D]. Soochow University

  62. Zhou J, Zhang B, Liu XW, Shi LJ, Zhu J, Wei DX, Zhong J, Sun G, He DN (2016) Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydr Polym 143:301–309

    CAS  PubMed  Google Scholar 

  63. Zhang YP, Huang JW, Huang L, Liu QQ, Shao HL, Hu XC, Song LJ (2016) Silk fibroin-based scaffolds with controlled delivery order of VEGF and BDNF for cavernous nerve regeneration. ACS Biomater Sci Eng 2(11):2018–2025

    CAS  PubMed  Google Scholar 

  64. Wang Q, Zhang YX, Li B, Chen L (2017) Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin–nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B 5:6963–6972

    CAS  PubMed  Google Scholar 

  65. Wu Y, Chang TQ, Chen WQ, Wang XY, Li JJ, Chen YQ, Yu Y, Shen ZY, Yu Q, Zhang YX (2021) Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of myocardial infarction. Bioact Mater 6(2):520–528

    CAS  PubMed  Google Scholar 

  66. Farokhi M, Mottaghitalab F, Shokrgozar MA, Ai J, Hadjati J, Azami M (2014) Biohybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor[J]. Mater Sci Eng, C 35:401–410

    CAS  Google Scholar 

  67. Ai CC, Sheng DD, Chen J, Cai JY, Wang SS, Jiang J, Chen SY (2017) Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultrahigh-molecularweight polyethylene by promoting angiogenesis[J]. Int J Nanomed

  68. Ding ZZ, Zhang YH, Guo P, Duan TB, Cheng WN, Guo Y, Zheng X, Lu GZ, Lu Q, Kaplan DL (2021) Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing. ACS Biomater Sci Eng 7(3):1147–1158

    CAS  PubMed  Google Scholar 

  69. Ding ZZ, Zhou ML, Zhou ZY, Zhang WJ, Jiang XQ, Lu XH, Zuo BQ, Lu Q, Kaplan DL (2019) Injectable silk nanofiber hydrogels for sustained release of small-molecule drugs and vascularization. ACS Biomater Sci Eng 5(8):4077–4088

    CAS  PubMed  Google Scholar 

  70. Qian ZY, Bai YT, Zhou J, Li LH, Na J, Fan YB, Guo XM, Liu HF (2020) A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B 8:7197–7212

    CAS  PubMed  Google Scholar 

  71. Yaghoubi Y, Movassaghpour A, Zamani M, Talebi M, Mehdizadeh A, Yousefi M (2019) Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment[J]. Life Sci 233:116733

    CAS  PubMed  Google Scholar 

  72. Luo YT, Jie J, Xu T, **e SL, Zhang JS, Liu J (2022) Effect and mechanism of exosomes derived from human umbilical cordmesenchymal stem cells on wound healing of pressure ulcers in mice[J]. J Naval Milit Med Univ 1–12

  73. Gil ES, Panilaitis B, Bellas E, Kaplan DL (2013) Functionalized silk biomaterials for wound healing. Adv Healthc Mater 2(1):206–217

    CAS  PubMed  Google Scholar 

  74. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5(7):2570–2578

    CAS  PubMed  Google Scholar 

  75. Freudenberg U, Zieris A, Chwalek K, Tsurkan MV, Maitz MF, Atallah P, Levental KR, Eming SA, Werner C (2015) Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds[J]. J Control Release 220(Pt A):79–88

    CAS  PubMed  Google Scholar 

  76. Mao D, Zhu MF, Zhang XY, Ma R, Yang XQ, Ke TY, Wang LY, Li ZJ, Kong DL, Li C (2017) A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival. Acta Biomater 59:210–220

    CAS  PubMed  Google Scholar 

  77. Yang PL, Wang D, Shi Y, Li MZ, Gao M, Yu TY, Liu D, Zhang J, Wang JZ, Zhang X, Liu Y (2020) Insulin-containing wound dressing promotes diabetic wound healing through stabilizing HIF-1α. Front Bioeng Biotechnol 8:592833

    PubMed  PubMed Central  Google Scholar 

  78. Zhu MM, Liu Y, Jiang FJ, Cao JX, Kundu SC, Lu SZ (2020) Combined silk fibroin microneedles for insulin delivery. ACS Biomater Sci Eng 6(6):3422–3429

    CAS  PubMed  Google Scholar 

  79. Hyun CK, Kim IY, Frost SC (2004) Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J Nutr 134(12):3257–3263

    CAS  PubMed  Google Scholar 

  80. Wang CB, Liu YB, He DN (2019) Diverse effects of platelet-derived growth factor-BB on cell signaling pathways[J]. Cytokine 113:13–20

    CAS  PubMed  Google Scholar 

  81. Wu H, Liu JY, Wu JJ, Wan Y, Chen Y (2016) Controlled delivery of platelet-derived growth factor-BB from injectable microsphere/hydrogel composites[J]. Colloids Surf B 148:308–316

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziling Sun.

Ethics declarations

Conflict of interest

All authors have no conflict of interests in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, H., Sun, Z. The recent development of silk fibroin in angiogenesis. Polym. Bull. 81, 3759–3779 (2024). https://doi.org/10.1007/s00289-023-04958-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04958-4

Keywords

Navigation