Log in

Preparation of FK-SA conjugate gel beads with double cross-linking for pH-controllable drug releasing

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Using feather keratin (FK), a kind of biocompatible natural polymer being extracted from widely available and renewable waste feathers, and sodium alginate (SA) as materials, the FK conjugated SA gel beads (FK-SA-Gbs) were prepared with double cross-linked by calcium ion (Ca2+) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). After being characterized and analyzed by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), its pH responsiveness, salt ion responsiveness, and degradability were measured, and the loading capacity of model drug Rhodamine B (RhB) under various physical conditions, the cumulative release rate of the loaded gel beads in different pH buffer solutions were also investigated. The results showed that the FK-SA-Gbs had significant pH sensitivity and sustained release, and various physical conditions can meet the requirements of wound dressings. It indicated FK-SA-Gbs can be used as controlled release drug carriers and are expected to be used as drug carrier materials in biomedical applications.

Graphical abstract

FK conjugated SA gel beads (FK-SA-Gbs) was prepared by secondary cross-linking with CaCl2 and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC/HCl) using feather keratin (FK) extracted from waste feathers, which have significant pH sensitivity and sustained release capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics. CA Cancer J Clin 64(4):252–271. https://doi.org/10.3322/caac.21235

    Article  Google Scholar 

  2. Hubbell JA, Langer R (2013) Translating materials design to the clinic. Nat Mater 12(11):963–966. https://doi.org/10.1038/nmat3788

    Article  CAS  Google Scholar 

  3. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561. https://doi.org/10.1039/C2CS15327K

    Article  CAS  Google Scholar 

  4. Sun K, Guo J, He Y, Song P, **ong Y, Wang RM (2016) Fabrication of dual-sensitive keratin-based polymer hydrogels and their controllable release behaviors. J Biomat Sci Polym Ed 27(18):1926–1940. https://doi.org/10.1080/09205063.2016.1239955

    Article  CAS  Google Scholar 

  5. Jiang T, Mo R, Bellotti A, Zhou J, Gu Z (2014) Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv Funct Mater 24(16):2295–2304. https://doi.org/10.1002/adfm.201303222

    Article  CAS  Google Scholar 

  6. Li X, Gao F, Dong Y, Li X (2019) Strategies to regulate the degradability of mesoporoussilica-based nanoparticles for biomedical applications. Nano 14(12):1930008. https://doi.org/10.1142/S1793292019300081

    Article  CAS  Google Scholar 

  7. Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H (2016) An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol 34(4):414–418. https://doi.org/10.1038/nbt.3506

    Article  CAS  Google Scholar 

  8. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. https://doi.org/10.1038/NMAT3776

    Article  CAS  Google Scholar 

  9. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. https://doi.org/10.1038/nrd2591

    Article  CAS  Google Scholar 

  10. Fang R, Yang S, Wang Y, Qian H (2015) Nanoscale drug delivery systems: A current review on the promising paclitaxel formulations for future cancer therapy. Nano 10(5):1530004. https://doi.org/10.1142/S1793292015300042

    Article  CAS  Google Scholar 

  11. Cai K, He X, Song Z, Yin Q, Zhang Y, Uckun FM, Jiang C, Cheng J (2015) Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J Am Chem Soc 137(10):3458–3461. https://doi.org/10.1021/ja513034e

    Article  CAS  Google Scholar 

  12. Hubbell JA, Chilkoti A (2012) Nanomaterials for drug delivery. Science 337(6092):303–305. https://doi.org/10.1126/science.1219657

    Article  Google Scholar 

  13. Chung JE, Tan S, Gao SJ, Yongvongsoontorn N, Kim SH, Lee JH, Choi HS, Yano H, Zhuo L, Kurisawa M, Ying JY (2014) Self-assembled micellar nanocomplexes comprising greentea catechin derivatives and protein drugs for cancer therapy. Nat Nano 9(11):907–912. https://doi.org/10.1038/nnano.2014.208

    Article  CAS  Google Scholar 

  14. Li XM, Wang B, He YF, Song P, Yan G, Wang R (2021) Soybean protein isolate-based microgels bounding amino acid metal complexes for scavenging superoxide anion radicals. Polym Bull 78(2):713–728. https://doi.org/10.1007/s00289-020-03121-7

    Article  CAS  Google Scholar 

  15. Stergar J, Maver U (2016) Review of aerogel-based materials in biomedical applications. J Sol–Gel Sci Techn 77(3):738–752. https://doi.org/10.1007/s10971-016-3968-5

    Article  CAS  Google Scholar 

  16. Franke-Whittle IH, Insam H (2013) Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: a review. Crit Rev Microbiol 39(2):139–151. https://doi.org/10.3109/1040841X.2012.694410

    Article  CAS  Google Scholar 

  17. Li M, Zhu Z, Pan X (2011) Effects of starch acryloylation on the grafting efficiency, adhesion, and film properties of acryloylated starch-g-poly (acrylic acid) for warp sizing. Starch-Starke 63(11):683–691. https://doi.org/10.1002/star.201100002

    Article  CAS  Google Scholar 

  18. Kucinska JK, Magnucka EG, Oksinska MP, Pietr SJ (2014) Bio efficacy of hen feather keratin hydrolysate and compost on vegetable plant growth. Compost Sci Util 22(3):179–187. https://doi.org/10.1080/1065657X.2014.918866

    Article  CAS  Google Scholar 

  19. Sadeghi S, Dadashian F, Eslahi N (2019) Recycling chicken feathers to produce adsorbent porous keratin-based sponge. Int J Environ Sci Technol 16(2):1119–1128. https://doi.org/10.1007/s13762-018-1669-z

    Article  CAS  Google Scholar 

  20. Nakata R, Osumi Y, Miyagawa S, Tachibana A, Tanabe T (2015) Preparation of keratin andchemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng 120(1):111–116. https://doi.org/10.1016/j.jbiosc.2014.12.005

    Article  CAS  Google Scholar 

  21. Gao L, Li R, Sui X, Li R, Chen C, Chen Q (2014) Conversion of chicken feather waste toN-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ Sci Technol 48(17):10191–10197. https://doi.org/10.1021/es5021839

    Article  CAS  Google Scholar 

  22. Pardo-Ibáñez P, Lopez-Rubio A, Martínez-Sanz M, Cabedo L, Lagaron JM (2014) Keratin–polyhydroxyalkanoate melt-compounded composites with improved barrier properties of interest in food packaging applications. J Appl Polym Sci. https://doi.org/10.1002/app.39947

    Article  Google Scholar 

  23. Yin XC, Li FY, He YF, Wang Y, Wang RM (2013) Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci 1(5):528–536. https://doi.org/10.1039/C3BM00158J

    Article  CAS  Google Scholar 

  24. **a W, **e M, Feng X, Chen L, Zhao Y (2018) Surface modification of poly (vinylidene fluoride) ultrafiltration membranes with chitosan for anti-fouling and antibacterial performance. Macromol Res 26(13):1225–1232. https://doi.org/10.1007/s13233-019-7019-2

    Article  CAS  Google Scholar 

  25. Feiz S, Navarchian AH (2019) Poly (vinyl alcohol) hydrogel/chitosan-modified clay nanocomposites for wound dressing application and controlled drug release. Macromol Res 27(3):290–300. https://doi.org/10.1007/s13233-019-7046-z

    Article  CAS  Google Scholar 

  26. Xue Y, **a X, Yu B, Luo X, Cai N, Long S, Yu F (2015) A green and facile method forthe preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Adv 5(90):73416–73423. https://doi.org/10.1039/C5RA13313K

    Article  CAS  Google Scholar 

  27. Alonso S (2018) Exploiting the bioengineering versatility of lactobionic acid in targeted nano systems and biomaterials. J Control Release 287:216–234. https://doi.org/10.1016/j.jconrel.2018.08.030

    Article  CAS  Google Scholar 

  28. Sarika PR, James NR (2016) Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohyd Polym 148:354–361. https://doi.org/10.1016/j.carbpol.2016.04.073

    Article  CAS  Google Scholar 

  29. Tam SK, Dusseault J, Polizu S, Ménard M, Hallé JP, Yahia LH (2005) Physicochemical model of alginate-poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials 26(34):6950–6961. https://doi.org/10.1016/j.biomaterials.2005.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grant No. 21865030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng He or Rongmin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ren, J., Qian, L. et al. Preparation of FK-SA conjugate gel beads with double cross-linking for pH-controllable drug releasing. Polym. Bull. 80, 331–347 (2023). https://doi.org/10.1007/s00289-022-04076-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04076-7

Keywords

Navigation