Log in

Efficient polymeric phosphorus flame retardant: flame retardancy, thermal property, and physical property on polylactide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel polymeric flame retardant, PBPP2, for polylactide (PLA) was synthesized via a two-step polymerization process. The flame retardancy of neat PLA and flame-retarded PLA films prepared via solution casting method with different PBPP2 ratios was then investigated. When only the 3 wt% PBPP2 was added to PLA, the limiting oxygen index was increased from 23 to 30%. Additionally, the required V-0 rating was achieved compared to neat PLA. It was also found that PBPP2 increases the maximum thermal decomposition temperature of PLA, indicating that 3 wt% of PBPP2 is sufficient to improve flame retardancy and thermal stability on PLA, simultaneously. From both the decrease in Tm and the increase in elongation for PLA with the 3 wt% addition of PBPP2, PBPP2 could be considered to also function as a plasticizer on PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Clean Prod 23:47–56

    Article  CAS  Google Scholar 

  2. Arikan EB, Ozsoy HD (2015) A review: investigation of bioplastics. J Civ Eng Archit 9:188–192

    Google Scholar 

  3. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  4. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277

    Article  CAS  PubMed  Google Scholar 

  5. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  6. Llorens E, del Valle LJ, Puiggali J (2015) Electrospun scaffolds of polylactide with a different enantiomeric content and loaded with anti-inflammatory and antibacterial drugs. Macromol Res 23:636–648

    Article  CAS  Google Scholar 

  7. Garlotta DJ (2001) A literature review of poly (lactic acid). Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  8. Cheng KC, Chang SC, Lin YH, Wang CC (2015) Mechanical and flame retardant properties of polylactide composites with hyperbranched polymers. Compos Sci Technol 118:186–192

    Article  CAS  Google Scholar 

  9. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  10. Shirali H, Rafizadeh M, Taromi FA (2015) Effect of incorporating bis(2-hydroxyethyl) terephthalate on thermal and mechanical properties and degradability of poly(butylene succinate). Macromol Res 23:755–764

    Article  CAS  Google Scholar 

  11. Song YP, Wang DY, Wang XL, Lin L, Wang YZ (2011) A method for simultaneously improving the flame retardancy and toughness of PLA. Polym Adv Technol 22:2295–2301

    Article  CAS  Google Scholar 

  12. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  PubMed  Google Scholar 

  13. Shukor F, Hassan A, Islam MS, Mokhtar M, Hassan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Mater Des 54:425–429

    Article  CAS  Google Scholar 

  14. Huang LP, ** B, Lant P, Zhou J (2005) Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem Eng J 23:265–276

    Article  CAS  Google Scholar 

  15. Lee HY, Cha SH (2017) Enhancement of self-healing property by introducing ethylene glycol group into thermally reversible Diels–Alder reaction based self-healable materials. Macromol Res 25:640–647

    Article  CAS  Google Scholar 

  16. Cheng KC, Lin YH, Guo W, Chuang TH, Chang SC, Wang SF, Don TM (2015) Flammability and tensile properties of polylactide nanocomposites with short carbon fibers. J Mater Sci 50:1605–1612

    Article  CAS  Google Scholar 

  17. Nishida H, Fan Y, Mori T, Oyagi N, Shirai Y, Endo T (2005) Feedstock recycling of flame-resisting poly (lactic acid)/aluminum hydroxide composite to L, L-lactide. Ind Eng Chem Res 44:1433–1437

    Article  CAS  Google Scholar 

  18. Wei LL, Wang DY, Chen HB, Chen L, Wang XL, Wang YZ (2011) Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly (lactic acid). Polym Degrad Stab 96:1557–1561

    Article  CAS  Google Scholar 

  19. Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228

    Article  CAS  Google Scholar 

  20. Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Improvement of flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus-containing flame retardant. J Ind Text 46:914–928

    Article  CAS  Google Scholar 

  21. Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J Clean Prod 124:114–119

    Article  CAS  Google Scholar 

  22. Hoang D, Kim J (2008) Synthesis and applications of biscyclic phosphorus flame retardants. Polym Degrad Stab 93:36–42

    Article  CAS  Google Scholar 

  23. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  24. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364

    Article  CAS  Google Scholar 

  25. Veen IVD, Boer JD (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–1153

    Article  CAS  Google Scholar 

  26. Liao F, Zhou L, Ju Y, Yang Y, Wang X (2014) Synthesis of a novel phosphorus–nitrogen–silicon polymeric flame retardant and its application in poly (lactic acid). Ind Eng Chem Res 53:10015–10023

    Article  CAS  Google Scholar 

  27. Zhang R, **ao X, Tai Q, Huang H, Hu Y (2012) Modification of lignin and its application as char agent in intumescent flame-retardant poly (lactic acid). Polym Eng Sci 52:2620–2626

    Article  CAS  Google Scholar 

  28. Zhang R, **ao X, Tai Q, Huang H, Yang J, Hu Y (2012) Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. High Perform Polym 24:738–746

    Article  CAS  Google Scholar 

  29. Lim KS, Bee ST, Sin LT, Tee TT, Ratnam CT, Hui D, Rahmat AR (2016) A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos Part B 84:155–174

    Article  CAS  Google Scholar 

  30. Li S, Yuan H, Yu T, Yuan W, Ren J (2009) Flame-retardancy and anti-drip** effects of intumescent flame retardant incorporating montmorillonite on poly (lactic acid). Polym Adv Technol 20:1114–1120

    Article  CAS  Google Scholar 

  31. Wang X, Li Y, Liao W, Gu J, Li D (2008) A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polym Adv Technol 19:1055–1061

    Article  CAS  Google Scholar 

  32. Réti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635

    Article  CAS  Google Scholar 

  33. Zhan J, Song L, Nie S, Hu Y (2009) Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 94:291–296

    Article  CAS  Google Scholar 

  34. Kiuchi Y, Lji M, Yanagisawa T, Shukichi T (2014) Flame-retarding polylactic-acid composite formed by dual use of aluminum hydroxide and phenol resin. Polym Degrad Stab 109:336–342

    Article  CAS  Google Scholar 

  35. Shin BS, Jung ST, Jeun JP, Kim HB, Oh SH, Kang PH (2012) A study on flammability and mechanical properties of HDPE/EPDM/boron carbide/triphenyl phosphate blends with compatibilizer. Polym Korea 36:549–554

    Article  CAS  Google Scholar 

  36. Hu X, Guo Y, Chen L, Wang X, Li L, Wang Y (2012) A novel polymeric intumescent flame retardant: synthesis, thermal degradation mechanism and application in ABS copolymer. Polym Degrad Stab 97:1772–1778

    Article  CAS  Google Scholar 

  37. Liu W, Chen DQ, Wang YZ, Wang DY, Qu MH (2007) Char-forming mechanism of a novel polymeric flame retardant with char agent. Polym Degrad Stab 92:1046–1052

    Article  CAS  Google Scholar 

  38. Gordon SH, Cao X, Mohamed A, Willett JL (2005) Infrared spectroscopy method reveals hydrogen bonding and intermolecular interaction between components in polymer blends. J Appl Polym Sci 97:813–821

    Article  CAS  Google Scholar 

  39. Du L, Qu B, Xu Z (2006) Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite. Polym Degrad Stab 91:995–1001

    Article  CAS  Google Scholar 

  40. Lin HJ, Liu SR, Han LJ, Wang XM, Bian YJ, Dong LS (2013) Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly (lactic acid). Polym Degrad Stab 98:1389–1396

    Article  CAS  Google Scholar 

  41. Cullis CF, Hirschler MM (1984) Char formation from polyolefins. Correlations with low-temperature oxygen uptake and with flammability in the presence of metal halogen systems. Eur Polym J 20:53–60

    Article  CAS  Google Scholar 

  42. Liao F, Ju Y, Dai X, Cao Y, Li J, Wang X (2015) A novel efficient polymeric flame retardant for poly (lactic acid)(PLA): synthesis and its effects on flame retardancy and crystallization of PLA. Polym Degrad Stab 120:251–261

    Article  CAS  Google Scholar 

  43. Morgan AB, Harris RH Jr, Kashiwagi T, Chyall LJ, Gilman JW (2002) Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire Mater 26:247–253

    Article  CAS  Google Scholar 

  44. Kashiwagi T, Shields JR, Harris RH Jr, Davis RD (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polym Sci 87:1541–1553

    Article  CAS  Google Scholar 

  45. Yuan Y, Yang H, Yu B, Shi Y, Wang W, Song L, Hu Y, Zhang Y (2016) Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind Eng Chem Res 55:10813–10822

    Article  CAS  Google Scholar 

  46. Wu D, Wu L, Zhang M, Zhao Y (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93:1577–1584

    Article  CAS  Google Scholar 

  47. Bugajny M, Bourbigot S, Bras ML, Delobel R (1999) The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polym Int 48:264–270

    Article  CAS  Google Scholar 

  48. Song L, Xuan S, Wang X, Hu Y (2012) Flame retardancy and thermal degradation behaviors of phosphate in combination with POSS in polylactide composites. Thermochim Acta 527:1–7

    Article  CAS  Google Scholar 

  49. Levchik SV, Weil ED (2005) Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int 54:11–35

    Article  CAS  Google Scholar 

  50. Lin H, Han L, Dong L (2014) Thermal degradation behavior and gas phase flame-retardant mechanism of polylactide/PCPP blends. J Appl Polym Sci 131:40480

    Article  CAS  Google Scholar 

  51. Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros 25:581–590

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Kyonggi University Research Grant 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Ho Cha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, MJ., Cha, SH. Efficient polymeric phosphorus flame retardant: flame retardancy, thermal property, and physical property on polylactide. Polym. Bull. 76, 3463–3479 (2019). https://doi.org/10.1007/s00289-018-2558-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2558-9

Keywords

Navigation