Log in

A new dual hydrophilic–hydrophobic acrylic resin containing pyridine and 1,3,4-oxadiaxole moieties for removal of Co(II)ions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study reports the synthesis and characterization of a new acrylamide-based monomer containing pyridine and 1,3,4-oxadiazole moieties, N-(4-(5-(pyridin-2-yl)-1,3,4-oxadiazol-2-l)phenyl) acrylamide (POPA). The adsorbent resin was obtained by free radical copolymerization of POPA and acrylamide with a ratio of 9:91 mol% in the presence of N,N′-methylenebisacrylamide (MBA) as cross-linking agent. Thermal properties of poly(POPA), poly(acrylamide) and the cross-linked resin were assessed by thermogravimetric analysis and differential thermal analysis. The capability of cross-linked resin to remove Co(II) cations was shown under optimal adsorption time, pH and adsorbent mass. The adsorption kinetics obeyed the pseudo-second-order kinetic equation, and the Langmuir model described the adsorption isotherm with a maximum adsorption capacity of 24.10 mg g−1. In addition, the resin was regenerated by simply washing with 0.1 M aqueous solution of HCl, and no significant decrease was observed in the extraction efficiency following the test of up to eight cycles. The current findings suggest that the obtained resin is a stable and reusable adsorbent that can be potentially applied to water treatments for the efficient removal of Co(II) cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  CAS  PubMed  Google Scholar 

  2. Lapwanit S, Trakulsujaritchok T, Nongkhai PN (2016) Chelating magnetic copolymer composite modified by click reaction for removal of heavy metal ions from aqueous solution. Chem Eng J 289:286–295

    Article  CAS  Google Scholar 

  3. Cui Y, Chen Q, Zhang D-D, Cao J, Han B-H (2010) Triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands as chemosensors for metal ions. J Polym Sci A Polym Chem 48:1310–1316

    Article  CAS  Google Scholar 

  4. Kurniawan TA, Chan GYS, Lo W-h, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426

    Article  CAS  PubMed  Google Scholar 

  5. Masoumi A, Ghaemy M, Bakht AN (2014) Removal of metal ions from water using poly(MMA-co-MA)/modified-Fe3O4 magnetic nanocomposite: isotherm and kinetic study. Ind Eng Chem Res 53:8188–8197

    Article  CAS  Google Scholar 

  6. Azizi P, Golshekan M, Shariati S, Rahchamani J (2015) Solid phase extraction of Cu2+, Ni2+, and Co2+ ions by a new magnetic nano-composite: excellent reactivity combined with facile extraction and determination. Environ Monit Assess 187:185

    Article  CAS  PubMed  Google Scholar 

  7. Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104:222–234

    Article  CAS  Google Scholar 

  8. Mungray AA, Kulkarni SV, Mungray AK (2012) Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: a review. Cent Eur J Chem 10:27–46

    Article  CAS  Google Scholar 

  9. Maturana HA, Perič IM, Rivas BL, Amalia Pooley S (2011) Interaction of heavy metal ions with an ion exchange resin obtained from a natural polyelectrolyte. Polym Bull 67:669–676

    Article  CAS  Google Scholar 

  10. Ramasahayam SK, Gunawan G, Finlay C, Viswanathan T (2012) Renewable resource-based magnetic nanocomposites for removal and recovery of phosphorous from contaminated waters. Water Air Soil Pollut 223:4853–4863

    Article  CAS  Google Scholar 

  11. Chen Y, He M, Wang C, Wei Y (2014) A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb(II), Cu(II) and Cr(III) ions from aqueous solutions. J Mater Chem A 2:10444–10453

    Article  CAS  Google Scholar 

  12. Cegłowski M, Schroeder G (2015) Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions. Chem Eng J 263:402–411

    Article  CAS  Google Scholar 

  13. Lin Z, Zhang Y, Chen Y, Qian H (2012) Extraction and recycling utilization of metal ions (Cu2+, Co2+ and Ni2+) with magnetic polymer beads. Chem Eng J 200–202:104–112

    Article  CAS  Google Scholar 

  14. Gupta VK, Ganjali MR, Nayak A, Bhushan B, Agarwal S (2012) Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chem Eng J 197:330–342

    Article  CAS  Google Scholar 

  15. Ciesielczyk F, Bartczak P, Wieszczycka K, Siwińska-Stefańska K, Nowacka M, Jesionowski T (2013) Adsorption of Ni(II) from model solutions using co-precipitated inorganic oxides. Adsorption 19:423–434

    Article  CAS  Google Scholar 

  16. Klapiszewski L, Madrawska M, Jesionowski T (2012) Preparation and characterisation of hydrated silica/lignin biocomposites. Physicochem Probl Miner Process 48:463–473

    CAS  Google Scholar 

  17. Dowling KC, Thomas JK (1990) A novel micellar synthesis and photophysical characterization of water-soluble acrylamide-styrene block copolymers. Macromolecules 23:1059–1064

    Article  CAS  Google Scholar 

  18. Ng WK, Tam KC, Jenkins RD (1999) Evaluation of intrinsic viscosity measurements of hydrophobically modified polyelectrolyte solutions. Eur Polym J 35:1245–1252

    Article  CAS  Google Scholar 

  19. Gomez-Valdemoro A, San-Jose N, Garcia FC, De La Pena JL, Serna F, Garcia JM (2010) Novel aromatic polyamides with main chain and pendant 1,2,4-triazole moieties and their application to the extraction/elimination of mercury cations from aqueous media. Polym Chem 1:1291–1301

    Article  CAS  Google Scholar 

  20. Akkaya T, Gülfen M, Olgun U (2013) Adsorption of rhodium(III) ions onto poly(1,8-diaminonaphthalene) chelating polymer: equilibrium, kinetic and thermodynamic study. React Funct Polym 73:1589–1596

    Article  CAS  Google Scholar 

  21. **ong C, Li Y, Wang G, Fang L, Zhou S, Yao C, Chen Q, Zheng X, Qi D, Fu Y, Zhu Y (2015) Selective removal of Hg(II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole chelating resin: batch and column study. Chem Eng J 259:257–265

    Article  CAS  Google Scholar 

  22. Yahaya GO, Ahdab AA, Ali SA, Abu-Sharkh BF, Hamad EZ (2001) Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. Polymer 42:3363–3372

    Article  CAS  Google Scholar 

  23. Yavuz E, Senkal BF, Bicak N (2005) Poly(acrylamide) grafts on spherical polyvinyl pyridine resin for removal of mercury from aqueous solutions. React Funct Polym 65:121–125

    Article  CAS  Google Scholar 

  24. Gómez-Valdemoro A, Trigo M, Ibeas S, García FC, Serna F, García JM (2011) Acrylic copolymers with pendant 1,2,4-triazole moieties as colorimetric sensory materials and solid phases for the removal and sensing of cations from aqueous media. J Polym Sci A Polym Chem 49:3817–3825

    Article  CAS  Google Scholar 

  25. Mansoori Y, Mohsenzadeh R (2015) Designed polyamides based on 1,4-bis[(4-aminophenyl)-1,3,4-oxadiazolyl]phenylene (BAPO) for removal of Cu(II) and Co(II). Des Monomers Polym 18:333–342

    Article  CAS  Google Scholar 

  26. Mansoori Y, Ghanbari M (2015) Novel polyimides obtained from a new aromatic diamine (BAPO) containing pyridine and 1,3,4-oxadiazole moieties for removal of Co(II) and Ni(II) ions. Polym Adv Technol 26:658–664

    Article  CAS  Google Scholar 

  27. Gallardo H, Magnago R, Bortoluzzi AJ (2001) Synthesis, characterization and mesomorphic properties of Ag(I) and Pd(II) complexes containing the pyridyl and tetrazoyl rings: crystal structure of [C30H46N10Ag ClO4]. Liq Cryst 28:1343–1352

    Article  CAS  Google Scholar 

  28. Mansoori Y, Fathollahi K, Zamanlou MR, Imanzadeh G (2011) Novel POBD-modified organoclay and its polyimide nanocomposites for removal of the Co(II) ion. Polym Compos 32:1862–1873

    Article  CAS  Google Scholar 

  29. Ding J, Day M, Robertson G, Roovers J (2002) Synthesis and characterization of alternating copolymers of fluorene and oxadiazole. Macromolecules 35:3474–3483

    Article  CAS  Google Scholar 

  30. Du M, Li C-P, Guo J-H (2006) Distinct Cd(II) and Co(II) thiocyanate coordination complexes with 2,5-bis(pyrazinyl)-1,3,4-oxadiazole: metal-directed assembly of a 1-D polymeric chain and a 3-D supramolecular network. Inorg Chim Acta 359:2575–2582

    Article  CAS  Google Scholar 

  31. Lagergren S (1898) Zur Theorie der Sogenannten Absorption gelöster Stoffe: PA Norstedt & söner

  32. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  33. Justi KC, Laranjeira MCM, Neves A, Mangrich AS, Fávere VT (2004) Chitosan functionalized with 2[-bis-(pyridylmethyl) aminomethyl]4-methyl-6-formyl-phenol: equilibrium and kinetics of copper (II) adsorption. Polymer 45:6285–6290

    Article  CAS  Google Scholar 

  34. Vasconcelos HL, Camargo TP, Gonçalves NS, Neves A, Laranjeira MCM, Fávere VT (2008) Chitosan crosslinked with a metal complexing agent: synthesis, characterization and copper(II) ions adsorption. React Funct Polym 68:572–579

    Article  CAS  Google Scholar 

  35. Hashemian S, Saffari H, Ragabion S (2014) Adsorption of cobalt(II) from aqueous solutions by Fe3O4/bentonite nanocomposite. Water Air Soil Pollut 226:2212

    Article  CAS  Google Scholar 

  36. Qiu X, Li N, Yang S, Chen D, Xu Q, Li H, Lu J (2015) A new magnetic nanocomposite for selective detection and removal of trace copper ions from water. J Mater Chem A 3:1265–1271

    Article  CAS  Google Scholar 

  37. Hossein Beyki M, Shemirani F, Shirkhodaie M (2016) Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored γ-Fe2O3@chitosan with Co(II) as imprinted ions. Int J Biol Macromol 87:375–384

    Article  CAS  PubMed  Google Scholar 

  38. Rajput S, Pittman CU Jr, Mohan D (2016) Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J Colloid Interface Sci 468:334–346

    Article  CAS  PubMed  Google Scholar 

  39. Sobhanardakani S, Ahmadi M, Zandipak R (2016) Efficient removal of Cu(II) and Pb(II) heavy metal ions from water samples using 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles. J Water Supply Res Technol 65:361–372

    Article  Google Scholar 

  40. Basavaraja C, Jo EA, Huh DS (2010) Characterization and magnetic properties of conducting poly(N-vinylcarbazole)-capped magnetite nanocomposite Langmuir–Schaefer films. Mater Lett 64:762–764

    Article  CAS  Google Scholar 

  41. Mittal H, Ballav N, Mishra SB (2014) Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of methylene blue from aqueous solution. J Ind Eng Chem 20:2184–2192

    Article  CAS  Google Scholar 

  42. Badruddoza AZM, Hazel GSS, Hidajat K, Uddin MS (2010) Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids Surf A Physicochem Eng Asp 367:85–95

    Article  CAS  Google Scholar 

  43. Manohar DM, Noeline BF, Anirudhan TS (2006) Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Appl Clay Sci 31:194–206

    Article  CAS  Google Scholar 

  44. Coşkun R, Soykan C, Saçak M (2006) Removal of some heavy metal ions from aqueous solution by adsorption using poly(ethylene terephthalate)-g-itaconic acid/acrylamide fiber. React Funct Polym 66:599–608

    Article  CAS  Google Scholar 

  45. Park Y, Lee Y-C, Shin WS, Choi S-J (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162:685–695

    Article  CAS  Google Scholar 

  46. Wang Q, Li J, Chen C, Ren X, Hu J, Wang X (2011) Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem Eng J 174:126–133

    Article  CAS  Google Scholar 

  47. Liu M, Chen C, Hu J, Wu X, Wang X (2011) Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal. J Phys Chem C 115:25234–25240

    Article  CAS  Google Scholar 

  48. Mahmoud MR, Rashad GM, Metwally E, Saad EA, Elewa AM (2017) Adsorptive removal of 134Cs+, 60Co2+ and 152 + 154Eu3+ radionuclides from aqueous solutions using sepiolite: single and multi-component systems. Appl Clay Sci 141:72–80

    Article  CAS  Google Scholar 

  49. Moawed EA, El-Hagrasy MA, Embaby NEM (2017) Substitution influence of halo polyurethane foam on the removal of bismuth, cobalt, iron and molybdenum ions from environmental samples. J Taiwan Inst Chem Eng 70:382–390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the project from The Graduate Council of the University of Mohaghegh Ardabili.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yagoub Mansoori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaeinejad, M., Mansoori, Y. A new dual hydrophilic–hydrophobic acrylic resin containing pyridine and 1,3,4-oxadiaxole moieties for removal of Co(II)ions. Polym. Bull. 76, 627–646 (2019). https://doi.org/10.1007/s00289-018-2399-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2399-6

Keywords

Navigation