Log in

Thermodynamic study of non-solvent/dimethyl sulfoxide/polyacrylonitrile ternary systems: effects of the non-solvent species

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In order to investigate the effects of the non-solvent species on the formation mechanism of polyacrylonitrile (PAN) fiber in wet spinning, theoretical ternary phase diagrams of water/DMSO/PAN and ethanol/DMSO/PAN systems were constructed based on the extended Flory–Huggins theory. The cloud-points of dilute PAN solutions of the two systems were determined by titration method and those of concentrated PAN solutions from Boom’s linearized cloud-point correlation. Binary interaction parameters were calculated and optimized to construct the theoretical phase diagram. The obtained diagrams were used to investigate the effects of the non-solvent species on the formation of PAN fibers. If the non-solvent water is replaced with ethanol, the meta-stable two-phase region in the ternary phase diagram increases. This favors the de-mixing of the filament via nucleation and growth mechanism during the coagulation process, resulting in homogenous dense PAN fibers with low porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a, b, a 0, a 1, a 2, a 3, a 4, α:

Constants

w 1 :

Mass fraction of non-solvent

w 2 :

Mass fraction of solvent

w 3 :

Mass fraction of polymer

g 12 :

Concentration-dependent binary interaction parameter between non-solvent and solvent

g 23 :

Binary interaction parameter between solvent and polymer

g 13 :

Binary interaction parameter between non-solvent and polymer

ΔG m :

Gibbs free energy of mixing

ΔG E :

Excess Gibbs free energy of mixing

n 1 :

Molar fraction of non-solvent

n 2 :

Molar fraction of solvent

R :

Gas constant

T :

Absolute temperature

Λ12, Λ21 :

Wilson parameter

ϕ1 :

Volume fraction of non-solvent

ϕ2 :

Volume fraction of solvent

ϕ3 :

Volume fraction of polymer

V 1 :

Molar volume of non-solvent

V 2 :

Molar volume of solvent

λ12 = λ21 :

Interaction energy parameter between non-solvent and solvent

λ22 :

Interaction energy parameter between solvent and solvent

λ11 :

Interaction energy parameter between non-solvent and non-solvent

γ1 :

Activity coefficient of non-solvent

γ2 :

Activity coefficient of solvent

δ1,d :

Dispersion force component of the solubility parameter of non-solvent

δ1,p :

Polar force component of the solubility parameter of non-solvent

δ1,h :

Hydrogen bond component of the solubility parameter of non-solvent

δ3,d :

Dispersion force component of the solubility parameter of polymer

δ3,p :

Polar force component of the solubility parameter of polymer

δ3,h :

Hydrogen bond component of the solubility parameter of polymer

Δμ1 :

Difference between the chemical potential of non-solvent in the mixture and the pure state

Δμ2 :

Difference between the chemical potential of solvent in the mixture and the pure state

Δμ3 :

Difference between the chemical potential of polymer in the mixture and the pure state

Δμ1,A :

Difference between the chemical potential of non-solvent in polymer-rich phase and the pure state

Δμ2,A :

Difference between the chemical potential of solvent in polymer-rich phase and the pure state

Δμ3,A :

Difference between the chemical potential of polymer in polymer-rich phase and the pure state

Δμ1,B :

Difference between the chemical potential of non-solvent in polymer-poor phase and the pure state

Δμ2,B :

Difference between the chemical potential of solvent in polymer-poor phase and the pure state

Δμ3,B :

Difference between the chemical potential of polymer in polymer-poor phase and the pure state

ϕ1,A :

Volume fraction of non-solvent in polymer-rich phase

ϕ2,A :

Volume fraction of solvent in polymer-rich phase

ϕ3,A :

Volume fraction of polymer in polymer-rich phase

ϕ1,B :

Volume fraction of non-solvent in polymer-poor phase

ϕ2,B :

Volume fraction of solvent in polymer-poor phase

ϕ3,B :

Volume fraction of polymer in polymer-poor phase

\( G_{22} \) :

\( \frac{{\partial^{2} \Updelta G_{\text{m}} }}{{\partial (\phi_{2} )^{2} }} \)

\( G_{33} \) :

\( \frac{{\partial^{2} \Updelta G_{\text{m}} }}{{\partial (\phi_{3} )^{2} }} \)

\( G_{23} \) :

\( \frac{{\partial^{2} \Updelta G_{\text{m}} }}{{\partial \phi_{2} \partial \phi_{3} }} \)

\( G_{222} \) :

\( \frac{{\partial^{3} \Updelta G_{\text{m}} }}{{\partial (\phi_{2} )^{3} }} \)

\( G_{223} \) :

\( \frac{{\partial^{3} \Updelta G_{\text{m}} }}{{\partial (\phi_{2} )^{2} \partial \phi_{3} }} \)

\( G_{233} \) :

\( \frac{{\partial^{3} \Updelta G_{\text{m}} }}{{\partial \phi_{2} \partial (\phi_{3} )^{2} }} \)

u 1 :

ϕ1/(ϕ1 + ϕ2)

u 2 :

ϕ2/(ϕ1 + ϕ2)

PAN:

Polyacrylonitrile

DMSO:

Dimethyl sulfoxide

LCP:

Linearized cloud-point

NG:

Nucleation and growth

SD:

Spinodal decomposition

References

  1. Liu XD, Ruland W (1993) X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules 26:3030–3036

    Article  CAS  Google Scholar 

  2. Ogawa H, Saito K (1995) Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon 33:783–788

    Article  CAS  Google Scholar 

  3. Xu Q, Xu LH, Cao WY, Wu SZ (2005) A study on the orientation structure and mechanical properties of polyacrylonitrile precursors. Polym Adv Technol 16:642–645

    Article  CAS  Google Scholar 

  4. Arbab S, Noorpanah P, Mohammadi N, Soleimani M (2008) Designing index of void structure and tensile properties in wet-spun polyacrylonitrile (PAN) fiber. I. Effect of dope polymer or nonsolvent concentration. J Appl Polym Sci 109:3461–3469

    Article  CAS  Google Scholar 

  5. Arbab S, Mohammadi N, Noorpanah P (2008) Designing index of void structure and tensile properties in wet-spun polyacrylonitrile (PAN) fiber. Part II: Synergistic effect of dope non-solvent concentration and jet draw ratio. Iran Polym J 17:227–235

    CAS  Google Scholar 

  6. Bogun M, Mikolajczyk T, Kurzak A, Blazewicz M, Rajzer I (2006) Influence of the as-spun draw ratio on the structure and properties of PAN fibres including montmorillonite. Fibers Text East Eur 14:13–16

    CAS  Google Scholar 

  7. Bogun M, Mikolajczyk T (2006) Influence of coagulation bath temperature on the porous structure and strength properties of PAN fibres including montmorillonite. Fibers Text East Eur 14:19–22

    CAS  Google Scholar 

  8. Dong XG, Wang CG, Chen J (2007) Study on the coagulation process of polyacrylonitrile nascent fibers during wet-spinning. Polym Bull 58:1005–1012

    Article  CAS  Google Scholar 

  9. Zeng XM, Zhang YW, Zhao JX, Pan D (2007) Investigating the jet stretch in the wet spinning of PAN fiber. J Appl Polym Sci 106:2267–2273

    Article  CAS  Google Scholar 

  10. Zeng XM, Chen JM, Zhao JX, Wu CX, Pan D, Pan N (2009) Investigation the jet stretch in PAN fiber dry-jet wet spinning for PAN–DMSO–H2O system. J Appl Polym Sci 114:3621–3625

    Article  CAS  Google Scholar 

  11. Tompa H (1956) Polymer solutions. Butterworths Scientific Publications, London

    Google Scholar 

  12. Yilmaz L, McHugh AJ (1986) Analysis of nonsolvent–solvent–polymer phase diagrams and their relevance to membrane formation modeling. J Appl Polym Sci 31:997–1018

    Article  CAS  Google Scholar 

  13. Altena FW, Smolders CA (1982) Calculation of liquid–liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules 15:1491–1497

    Article  CAS  Google Scholar 

  14. Boom RM, Boomgaard VD, Smolders CA (1993) Linearized cloud point curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 34:2348–2356

    Article  CAS  Google Scholar 

  15. Koningsveld R, Kleintjens LA (1971) Liquid–liquid phase separation in multicomponent polymer systems. X. Concentration dependence of the pair-interaction parameter in the system cyclohexane-polystyrene. Macromolecules 4:637–641

    Article  CAS  Google Scholar 

  16. Gmehling J, Onken U (1977) Chemistry data series. Dechema, Frankfurt

    Google Scholar 

  17. Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21:1086–1099

    Article  CAS  Google Scholar 

  18. Magnussen T, Rasmussen P, Fredenslund A (1981) UNIFAC parameter table for predication of liquid–liquid equilibria. Ind Eng Chem Process Des Dev 20:331–339

    Article  CAS  Google Scholar 

  19. Noack K, Kiefer J, Leipertz A (2010) Concentration-dependent hydrogen-bonding effects on the dimethyl sulfoxide vibrational structure in the presence of water, methanol, and ethanol. ChemPhysChem 11:630–637

    Article  CAS  Google Scholar 

  20. Fuoss RM, Mead DJ (1943) Osmotic pressures of polyvinyl chloride solutions by a dynamic method. J Phys Chem 47:59–70

    Article  CAS  Google Scholar 

  21. Zeman L, Tkacik G (1988) Thermodynamic analysis of a membrane-forming system water/N-methyl-2-pyrrolidone/polyethersulfone. J Membr Sci 36:119–140

    Article  CAS  Google Scholar 

  22. Wypych G (2002) Solvent manual. China Petrochemical Industry, Bei**g

    Google Scholar 

  23. Dong RJ, Keuser M, Zeng XM, Zhao JX, Zhang YW, Wu CX, Pan D (2008) Viscometric measurement of the thermodynamics of PAN terpolymer/DMSO/water system and effect of fiber-forming conditions on the morphology of PAN precursor. J Polym Sci B 46:1997–2011

    Article  CAS  Google Scholar 

  24. Kok CM, Rudin A (1981) Prediction of osmotic pressures of polymer solutions. J Appl Polym Sci 26:3575–3582

    Article  CAS  Google Scholar 

  25. Qian JW, Rudin A (1992) Prediction of thermodynamic properties of polymer solutions. Eur Polym J 28:725–732

    Article  CAS  Google Scholar 

  26. Tan LJ, Pan D, Pan N (2008) Thermodynamic study of a water-dimethylformamide-polyacrylonitrile ternary system. J Appl Polym Sci 110:3439–3447

    Article  CAS  Google Scholar 

  27. Dong RJ, Zhao JX, Zhang YW, Pan D (2008) Morphology control of polyacrylonitrle(PAN) fibers by phase separation technique. J Polym Sci B 47:261–275

    Google Scholar 

  28. Lindvig T, Michelsen ML, Kontogeorgis GM (2002) A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibr 203:247–260

    Article  CAS  Google Scholar 

  29. Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, New York, NY

    Book  Google Scholar 

  30. Zhang WX, Liu J, Wu G (2003) Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 41:2805–2812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Science and Technology Commission of Shanghai Municipality (07QA14001) and National 973 Project (2006CB605302 and 2006CB605303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youwei Zhang or Jiongxin Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, Y. & Zhao, J. Thermodynamic study of non-solvent/dimethyl sulfoxide/polyacrylonitrile ternary systems: effects of the non-solvent species. Polym. Bull. 67, 1073–1089 (2011). https://doi.org/10.1007/s00289-011-0525-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0525-9

Keywords

Navigation