Log in

Heavy SUSY Higgs bosons at e +e linear colliders

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

The production mechanisms and decay modes of the heavy neutral and charged Higgs bosons in the Minimal Supersymmetric Standard Model are investigated at future e +e colliders in the TeV energy regime. We generate supersymmetric particle spectra by requiring the MSSM Higgs potential to produce correct radiative electroweak symmetry breaking, and we assume a common scalar mass m0, gaugino mass m1/2 and trilinear coupling A, as well as gauge and Yukawa coupling unification at the Grand Unification scale. Particular emphasis is put on the low tan β solution in this scenario where decays of the Higgs bosons to Standard Model particles compete with decays to supersymmetric charginos/neutralinos as well as sfermions. In the high tan β case, the supersymmetric spectrum is either too heavy or the supersymmetric decay modes are suppressed, since the Higgs bosons decay almost exclusively into b and τ pairs. The main production mechanisms for the heavy Higgs particles are the associated AH production and H +H pair production with cross sections of the order of a few fb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wess and B. Zumino, Phys. Lett. B49 (1974) 52.

    Article  ADS  Google Scholar 

  2. For reviews on supersymmetric theories, see P. Fayet and S. Ferarra, Phys. Rep. 32 (1977) 249; H.P. Nilles, Phys. Rep. 110 (1984) 1; R. Barbieri, Riv. Nuovo Cimento 11 (1988) 1; H. Haber and G. Kane, Phys. Rep. 117 (1985) 75.

    Article  ADS  Google Scholar 

  3. P.W. Higgs, Phys. Rev. Lett. 12 (1964) 132 and Phys. Rev. 145 (1966) 1156; F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; G.S. Guralnik, C.R. Hagen and T.W. Kibble, Phys. Rev. Lett. 13 (1964) 585.

    Article  Google Scholar 

  4. For a review on the Higgs sector in the MSSM, see J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide, Addison-Wesley, Reading 1990.

    Google Scholar 

  5. H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.

    Article  ADS  Google Scholar 

  6. J. Ellis, S. Kelley and D.V. Nanopoulos, Phys. Lett. 260B (1991) 131; U. Amaldi, W. de Boer and H. Fürstenau, Phys. Lett. 260B (1991) 447; P. Langacker and M. Luo, Phys. Rev. D44 (1991) 817; G.G. Ross and R.G. Roberts, Nucl. Phys. B377 (1992) 571.

    Article  ADS  Google Scholar 

  7. The LEP Electroweak Working Group, Report CERN-PPE/95-172.

  8. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Prog. Theor. Phys. 68 (1982) 927; 71 (1984) 413; L.E. Ibañez and G.G. Ross, Phys. Lett. B110 (1982) 215; L. Alvarez-Gaumé, M. Claudson and M.B. Wise, Nucl. Phys. B207 (1982) 96; J. Ellis, D.V. Nanopoulos, and K. Tamvakis, Phys. Lett. B121 (1983) 123; M. Drees, Phys. Rev. D38 (1988) 718.

    Article  ADS  Google Scholar 

  9. J. Ellis, L. Fogli and M. Lisi, Z. Phys. C69 (1996) 627; P. Chankowski and S. Pokorski, Phys. Lett. B356 (1995) 307.

    Google Scholar 

  10. M. Veltman, Nucl. Phys. B123 (1977) 89.

    Article  ADS  Google Scholar 

  11. M. Chanowitz, J. Ellis and M. Gaillard, Nucl. Phys. 128 (1977) 506.

    Article  ADS  Google Scholar 

  12. B. Pendleton and G.G. Ross, Phys. Lett. 98B (1981) 291; C.T. Hill, Phys. Rev. D24 (1981) 691.

    Article  ADS  Google Scholar 

  13. V. Barger, M.S. Berger, and P. Ohmann, Phys. Rev. D47, (1993) 1093.

    ADS  Google Scholar 

  14. V. Barger, M.S. Berger, P. Ohmann, and R.J.N. Phillips, Phys. Lett. B314 (1993) 351; M. Carena, S. Pokorski, and C.E.M. Wagner, Nucl. Phys. B406 (1993) 59.

    Article  ADS  Google Scholar 

  15. F. Abe et al., CDF Coll., Phys. Rev. Lett. 74 (1995) 2626; S. Abachi et al., DO Coll., Phys. Rev. Lett. 74 (1995) 2632; F. Abe et al., CDF Coll., FNAL-PUB-96/004.

    Article  ADS  Google Scholar 

  16. H.E. Haber, Report CERN-TH/95-109, Proceedings Conference on Beyond the Standard Model IV, Lake Tahoe CA 1994; World Sci., J.F. Gunion et al., eds.

  17. Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1; H.E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815; J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. 257B (1991) 83; R. Barbieri, F. Caravaglios and M. Frigeni, Phys. Lett. 258B (1991) 167.

    Article  ADS  Google Scholar 

  18. H.E. Haber and G. Kane in Ref. [2].

  19. V. Barger, M.S. Berger, and P. Ohmann, Phys. Rev. D49, (1994) 4908.

    ADS  Google Scholar 

  20. W. de Boer et al., IEKP-KA/96-04, hep-ph/9603350.

  21. F.M. Borzumati, M. Olechowski, and S. Pokorski, Phys. Lett. B349, 311 (1995); H. Murayama, M. Olechowski, and S. Pokorski, UCB-PTH-95/34, hep-ph/9510327.

    Article  ADS  Google Scholar 

  22. M. Drees and M. Nojiri, Nucl. Phys. B369 (1992) 54.

    Article  ADS  Google Scholar 

  23. S. Bethke, Proceedings of the QCD 1994, Montpellier 1994.

  24. J.-F. Grivaz, Proc. Europhysics Conference on High Energy Physics, Brussels 1995; for the recent limits including LEP1.5 data, see: D. Buskulic et al., Aleph Collab. CERN-PPE-96-010; G. Alexander et al., OPAL Collab. CERN-PPE-019, 020; M. Acciarri et al., L3 Collab. CERN-PPE-96-029.

  25. J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett. B262, 477 (1991); A. Brignole, J. Ellis, G. Ridolfi, and F. Zwirner, Phys. Lett. B271, 123 (1991).

    Article  ADS  Google Scholar 

  26. M. Drees, Phys. Lett. B181, (1986) 279; J.S. Hagelin and S. Kelley, Nucl. Phys. B342, (1990) 95.

    Article  ADS  Google Scholar 

  27. A. Djouadi, G. Girardi, W. Hollik, F. Renard and C. Verzegnassi, Nucl. Phys. B349 (1991) 48; M. Boulware and D. Finnell, Phys. Rev. D44 (1991) 2054.

    Article  ADS  Google Scholar 

  28. See for instance W. Hollik, Proc. Europhysics Conference on High Energy Physics, Brussels 1995; J.D. Wells, C. Kolda, and G.L. Kane Phys. Lett. B338 (1994) 219.

  29. G. Kane, C. Kolda, L. Roszkowski, and J.D. Wells, Phys. Rev. D49, (1994) 6173.

    ADS  Google Scholar 

  30. A.J. Buras, M. Misiak, M. Münz, and S. Pokorski, Nucl. Phys. B424, (1994) 374.

    Article  ADS  Google Scholar 

  31. V. Barger, M.S. Berger, P. Ohmann and R.J.N. Phillips, Phys. Rev. D51, (1995) 2438; B. de Carlos and J.A. Casas, Phys. Lett. B349, (1995) 300, erratum — ibid. 351, (1995) 604.

    ADS  Google Scholar 

  32. A. Djouadi, J. Kalinowski and P.M. Zerwas, Z. Phys. C57, (1993) 569.

    ADS  Google Scholar 

  33. A. Djouadi, J. Kalinowski and P.M. Zerwas, Z. Phys. C70 (1996) 435.

    Google Scholar 

  34. A. Djouadi, M. Spira and P.M. Zerwas, Z. Phys. C70 (1996) 427.

    Google Scholar 

  35. J.F. Gunion and H. E. Haber, Nucl. Phys. B272 (1986) 1; B278 (1986) 449; B307 (1988) 445; erratum hep-ph/9301201.

    Article  ADS  Google Scholar 

  36. A. Bartl et al., Phys. Lett. B373 (1996) 117; A. Bartl et al., Phys. Lett. B315 (1993) 360.

    Article  ADS  Google Scholar 

  37. J.F. Gunion and H.E. Haber, Phys. Rev. D37 (1988) 2515.

    ADS  Google Scholar 

  38. M. El Kheishen, A. Shafik and A. Aboshousha, Phys. Rev. D45 (1992) 4345.

    ADS  Google Scholar 

  39. L.E. Ibañez and and C. Lopez, Nucl. Phys. B233 (1984) 511.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djouadi, A., Kalinowski, J., Ohmann, P. et al. Heavy SUSY Higgs bosons at e +e linear colliders. Z Phys C - Particles and Fields 74, 93–111 (1997). https://doi.org/10.1007/s002880050373

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002880050373

Navigation