Log in

A mathematical model with aberrant growth correction in tissue homeostasis and tumor cell growth

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Cancer is usually considered a genetic disease caused by alterations in genes that control cellular behaviors, especially growth and division. Cancer cells differ from normal tissue cells in many ways that allow them to grow out of control and become invasive. However, experiments have shown that aberrant growth in many tissues burdened with varying numbers of mutant cells can be corrected, and wild-type cells are required for the active elimination of mutant cells. These findings reveal the dynamic cellular behaviors that lead to a tissue homeostatic state when faced with mutational and nonmutational insults. The current study was motivated by these observations and established a mathematical model of how a tissue copes with the aberrant behavior of mutant cells. The proposed model depicts the interaction between wild-type and mutant cells through a system of two delay differential equations, which include the random mutation of normal cells and the active extrusion of mutant cells. Based on the proposed model, we performed qualitative analysis to identify the conditions of either normal tissue homeostasis or uncontrolled growth with varying numbers of abnormal mutant cells. Bifurcation analysis suggests the conditions of bistability with either a small or large number of mutant cells, the coexistence of bistable steady states can be clinically beneficial by driving the state of mutant cell predominance to the attraction basin of the state with a low number of mutant cells. This result is further confirmed by the treatment strategy obtained from optimal control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altrock PM, Liu LL, Michor F (2015) The mathematics of cancer: integrating quantitative models. Nat Rev Cancer 15(12):730–745

    Google Scholar 

  • Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22(2):163–186

    MATH  Google Scholar 

  • Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915

    Google Scholar 

  • Araujo RP, Mcelwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66(5):1039–1091

    MATH  Google Scholar 

  • Beretta E, Kuang Y (2002) Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J Math Anal 33(5):1144–1165

    MATH  Google Scholar 

  • Bernard S, Bélair J, Mackey MC (2003) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223(3):283–298

    MATH  Google Scholar 

  • Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329

    Google Scholar 

  • Brown S, Pineda CM, **n T, Boucher J, Suozzi KC, Park S, Matte-Martone C, Gonzalez DG, Rytlewski J, Beronja S, Greco V (2017) Correction of aberrant growth preserves tissue homeostasis. Nature 548(7667):334–337

    Google Scholar 

  • Brunetti M, Mackey MC, Craig M (2021) Understanding normal and pathological hematopoietic stem cell biology using mathematical modelling. Curr Stem Cell Rep 7(3):109–120

    Google Scholar 

  • Burns FJ, Tannock IF (1970) On the existence of a \(G_0\)-phase in the cell cycle. Cell Tiss Kinet 3(4):321–334

    Google Scholar 

  • Castiglione M, Zhang H, Kaushansky K, Zhan H (2021) Cell competition between wild-type and JAK2V617F mutant cells in a murine model of a myeloproliferative neoplasm. Exp Hematol 100:52–62

    Google Scholar 

  • Celso CL, Prowse DM, Watt FM (2004) Transient activation of \(\beta \)-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131(8):1787–1799

    Google Scholar 

  • Chen CL, Schroeder MC, Kango-Singh M, Tao C, Halder G (2012) Tumor suppression by cell competition through regulation of the Hippo pathway. Proc Natl Acad Sci USA 109(2):484–489

    Google Scholar 

  • Colijn C, Mackey MC (2005) A mathematical model of hematopoiesis-I. Periodic chronic myelogenous leukemia. J Theor Biol 237(2):117–132

    MATH  Google Scholar 

  • Colom B, Herms A, Hall MWJ, Dentro SC, King C, Sood RK, Alcolea MP, Piedrafita G, Fernandez-Antoran D, Ong SH, Fowler JC, Mahbubani KT, Saeb-Parsy K, Gerstung M, Hall BA, Jones PH (2021) Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598(7881):510–514

    Google Scholar 

  • Craig M, Humphries AR, Nekka F, Bélair J, Li J, Mackey MC (2015) Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: mathematical modelling guides dose optimisation to minimise neutropenia. J Theor Biol 385:77–89

    MATH  Google Scholar 

  • De Souza DC, Humphries AR (2019) Dynamics of a mathematical hematopoietic stem-cell population model. SIAM J Appl Dyn Syst 18(2):808–852

    MATH  Google Scholar 

  • Gatenby RA, Vincent TL (2003) An evolutionary model of carcinogenesis. Cancer Res 63(19):6212–6220

    Google Scholar 

  • Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P (2018) PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14(2):e1005991

    Google Scholar 

  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, deFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158

    Google Scholar 

  • Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Springer-Verlag, New York

    MATH  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Google Scholar 

  • Hayes ND (1950) Roots of the transcendental equation associated with a certain difference-differential equation. J Lond Math Soc 25(3):226–232

    MATH  Google Scholar 

  • Hill W, Zaragkoulias A, Salvador-Barbero B, Parfitt GJ, Alatsatianos M, Padilha A, Porazinski S, Woolley TE, Morton JP, Sansom OJ, Hogan C (2021) EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol 31(12):2550–2560

    Google Scholar 

  • Hogan C, Dupré-Crochet S, Norman M, Kajita M, Zimmermann C, Pelling AE, Piddini E, Baena-López LA, Vincent JP, Itoh Y, Hosoya H, Pichaud F, Fujita Y (2009) Characterization of the interface between normal and transformed epithelial cells. Nat Cell Biol 11(4):460–467

    Google Scholar 

  • Hogan C, Kajita M, Lawrenson K, Fujita Y (2011) Interactions between normal and transformed epithelial cells: their contributions to tumourigenesis. Int J Biochem Cell Biol 43(4):496–503

    Google Scholar 

  • Hu M, Polyak K (2008) Microenvironmental regulation of cancer development. Curr Opin Genet Dev 18(1):27–34

    Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Google Scholar 

  • Kajita M, Hogan C, Harris AR, Dupre-Crochet S, Itasaki N, Kawakami K, Charras G, Tada M, Fujita Y (2010) Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells. J Cell Sci 123(2):171–180

    Google Scholar 

  • Kon S, Ishibashi K, Katoh H, Kitamoto S, Shirai T, Tanaka S, Kajita M, Ishikawa S, Yamauchi H, Yako Y, Kamasaki T, Matsumoto T, Watanabe H, Egami R, Sasaki A, Nishikawa A, Kameda I, Maruyama T, Narumi R, Morita T, Sasaki Y, Enoki R, Honma S, Imamura H, Oshima M, Soga T, Miyazaki JI, Duchen MR, Nam JM, Onodera Y, Yoshioka S, Kikuta J, Ishii M, Imajo M, Nishida E, Fujioka Y, Ohba Y, Sato T, Fujita Y (2017) Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Nat Cell Biol 19(5):530–541

    Google Scholar 

  • Lei J (2020) A general mathematical framework for understanding the behavior of heterogeneous stem cell regeneration. J Theor Biol 492:110196

    MATH  Google Scholar 

  • Lei J (2020) Evolutionary dynamics of cancer: from epigenetic regulation to cell population dynamics-mathematical model framework, applications, and open problems. Sci China Math 63(3):411–424

    MATH  Google Scholar 

  • Lei J, Mackey MC (2007) Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system. SIAM J Appl Math 67(2):387–407

    MATH  Google Scholar 

  • Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Li Q, Bohin N, Wen T, Ng V, Magee J, Chen SC, Shannon K, Morrison SJ (2013) Oncogenic nras has bimodal effects on stem cells that sustainably increase competitiveness. Nature 504(7478):143–147

    Google Scholar 

  • Lowengrub JS, Frieboes HB, ** F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1):R1–R91

    MATH  Google Scholar 

  • Mackey MC (1978) Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51(5):941–956

    Google Scholar 

  • Mackey MC (2001) Cell kinetic status of haematopoietic stem cells. Cell Prolif 34(2):71–83

    Google Scholar 

  • Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, Lasitschka F, Mastitsky SE, Brors B, Hielscher T, Fehling HJ, Rodewald HR (2014) Cell competition is a tumour suppressor mechanism in the thymus. Nature 509(7501):465–470

    Google Scholar 

  • Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J (2010) Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol 8(3):e1000324

    Google Scholar 

  • Morata G, Ripoll P (1975) Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol 42(2):211–221

    Google Scholar 

  • Moreno E, Basler K (2004) dMyc transforms cells into super-competitors. Cell 117(1):117–129

    Google Scholar 

  • Moustakas A, Pardali K, Gaal A, Heldin CH (2002) Mechanisms of TGF-\(\beta \) signaling in regulation of cell growth and differentiation. Immunol Lett 82(1–2):85–91

    Google Scholar 

  • Moya IM, Castaldo SA, Van den Mooter L, Soheily S, Sansores-Garcia L, Jacobs J, Mannaerts I, **e J, Verboven E, Hillen H, Algueró-Nadal A, Karaman R, Van Haele M, Kowalczyk W, De Waegeneer M, Verhulst S, Karras P, van Huffel L, Zender L, Marine JC, Roskams T, Johnson R, Aerts S, van Grunsven LA, Halder G (2019) Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 366(6468):1029–1034

    Google Scholar 

  • Parker TM, Gupta K, Palma AM, Yekelchyk M, Fisher PB, Grossman SR, Won KJ, Madan E, Moreno E, Gogna R (2021) Cell competition in intratumoral and tumor microenvironment interactions. EMBO J 40(17):e107271

    Google Scholar 

  • Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25(1):30–38

    Google Scholar 

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Interscience Publishers, New York

    MATH  Google Scholar 

  • Pujo-Menjouet L, Bernard S, Mackey MC (2005) Long period oscillations in a \(G_0\) model of hematopoietic stem cells. SIAM J Appl Dyn Syst 4(2):312–332

    MATH  Google Scholar 

  • Pujo-Menjouet L, Mackey MC (2004) Contribution to the study of periodic chronic myelogenous leukemia. C R Biol 327(3):235–244

    Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Google Scholar 

  • Ramos CV, Martins VC (2021) Cell competition in hematopoietic cells: quality control in homeostasis and its role in leukemia. Dev Biol 475:1–9

    Google Scholar 

  • Rocha HL, Almeida RC, Lima EABF, Resende ACM, Oden JT, Yankeelov TE (2018) A hybrid three-scale model of tumor growth. Math Models Meth Appl Sci 28(1):61–93

    MATH  Google Scholar 

  • Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, Robinson DN, Overholtzer M (2014) Competition between human cells by entosis. Cell Res 24(11):1299–1310

    Google Scholar 

  • Van Egeren D, Escabi J, Nguyen M, Liu S, Reilly CR, Patel S, Kamaz B, Kalyva M, DeAngelo DJ, Galinsky I, Wadleigh M, Winer ES, Luskin MR, Stone RM, Garcia JS, Hobbs GS, Camargo FD, Michor F, Mullally A, Cortes-Ciriano I, Hormoz S (2021) Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms. Cell Stem Cell 28(3):514–523

    Google Scholar 

  • van Neerven SM, de Groot NE, Nijman LE, Scicluna BP, van Driel MS, Lecca MC, Warmerdam DO, Kakkar V, Moreno LF, Braga FAV, Sanches DR, Ramesh P, ten Hoorn S, Aelvoet AS, van Boxelk MF, Koens L, Krawczyk PM, Koster J, Dekker E, Medema JP, Winton DJ, Bijlsma MF, Morrissey E, Léveillé N, Vermeulen L (2021) Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594(7863):436–441

    Google Scholar 

  • Vishwakarma M, Piddini E (2020) Outcompeting cancer. Nat Rev Cancer 20(3):187–198

    Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Google Scholar 

  • Yamamoto M, Ohsawa S, Kunimasa K, Igaki T (2017) The ligand sas and its receptor PTP10D drive tumour-suppressive cell competition. Nature 542(7640):246–250

    Google Scholar 

  • Yang H, Lei J (2019) A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Math Biosci Eng 16(6):7098–7111

    MATH  Google Scholar 

  • Yang L, Pang Y, Moses HL (2010) TGF-\(\beta \) and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227

    Google Scholar 

  • Zhang J, Cunningham JJ, Brown JS, Gatenby RA (2017) Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun 8:1816

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC 11831015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **zhi Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, M. & Lei, J. A mathematical model with aberrant growth correction in tissue homeostasis and tumor cell growth. J. Math. Biol. 86, 2 (2023). https://doi.org/10.1007/s00285-022-01837-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-022-01837-w

Keywords

Mathematics Subject Classification

Navigation