Log in

Conjugation of Lysozyme and Epigallocatechin Gallate for Improving Antibacterial and Antioxidant Properties

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

One of the main interests in the food industry is the preservation of food from spoilage by microorganisms or lipid oxidation. A novel alternative is the development of additives of natural origin with dual activity. In the present study, a chemically modified lysozyme (Lys) with epigallocatechin gallate (EGCG) was developed to obtain a conjugate (Lys-EGCG) with antibacterial/antioxidant activity to improve its properties and increase its application potential. The modification reaction was carried out using a free radical grafting method for the Lys modification reaction, using ascorbic acid and hydrogen peroxide as radical initiators in an aqueous medium. The synthesis of Lys-EGCG conjugate was confirmed by spectroscopic (FT-IR, 1H-RMN, and XPS) and calorimetry differential scanning (DSC) analyses. The EGCG binding to the Lys biomolecule was quantified by the Folin-Ciocalteu method; the antibacterial activity was evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MCB) against Staphylococcus aureus and Pseudomonas fluorescens; the antioxidant activity was evaluated by ABTS, DPPH, and FRAP. The spectroscopic results showed that the Lys-EGCG conjugate was successfully obtained, and the DSC analysis revealed a 20 °C increase (P < 0.05) in the denaturation temperature of Lys due to EGCG modification. The EGCG concentration in Lys-EGCG was 97.97 ± 4.7 µmol of EGCG/g of sample. The antibacterial and antioxidant activity of the Lys-EGCG conjugate was higher (P < 0.05) than pure EGCG and Lys. The chemical modification of Lys with EGCG allows for the bioconjugate with a dual function (antibacterial/antioxidant), broadening the range of Lys and EGCG applications to different areas such as food, cosmetic, and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Code Availability

Not applicable.

References

  1. Lesnierowski G, Stangierski J (2018) What’s new in chicken egg research and technology for human health promotion? A review. Trends Food Sci Technol 71:46–51. https://doi.org/10.1016/j.tifs.2017.10.022

    Article  CAS  Google Scholar 

  2. Kim S, Fan J, Lee CS, Lee M (2020) Dual functional lysozyme−chitosan conjugate for tunable degradation and antibacterial activity. ACS App Bio Mater 3:2334–2343

    Article  CAS  Google Scholar 

  3. Nawaz N, Wen S, Wang F, Nawaz S, Raza J, Iftikhar M, Usman M (2022) Lysozyme and its application as antibacterial agent in food industry. Molecules 27:6305. https://doi.org/10.3390/molecules27196305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu T, Jiang Q, Wu D, Hu Y, Chen S, Ding T, Ye X, Liu D, Chen J (2019) What is new in lysozyme research and its application in food industry? A review. Food Chem 274:698–709. https://doi.org/10.1016/j.foodchem.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  5. Anastas PT, Rodriguez A, de Winter TM, Coish P, Zimmerman JB (2021) A review of immobilization techniques to improve the stability and bioactivity of lysozyme. Green Chem Lett Rev 14:302–338. https://doi.org/10.1080/17518253.2021.1890840

    Article  CAS  Google Scholar 

  6. Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M, Prieto MA, Bohrer B, Lorenzo JM (2022) Protein oxidation in muscle foods: a comprehensive review. Antioxidants 11:60. https://doi.org/10.3390/antiox11010060

    Article  CAS  Google Scholar 

  7. Li H, Pan Y, Li C, Yang Z, Rao J, Chen B (2022) Design, synthesis and characterization of lysozyme–gentisic acid dual-functional conjugates with antibacterial/antioxidant activities. Food Chem 370:131032. https://doi.org/10.1016/j.foodchem.2021.131032

    Article  CAS  PubMed  Google Scholar 

  8. Feng J, Xu H, Zhang L, Wang H, Liu S, Liu Y, Hou W, Li C (2018) Development of nanocomplexes for curcumin vehiculization using ovalbumin and sodium alginate as building blocks: Improved stability, bioaccessibility, and antioxidant activity. J Agric Food Chem 67:379–390. https://doi.org/10.1021/acs.jafc.8b02567

    Article  CAS  PubMed  Google Scholar 

  9. Sun J, **g H, Mu Y, McClements DJ, Dong S, Xu B (2020) Fabrication of antioxidant emulsifiers from natural ingredients: Conjugation of egg white proteins with catechin and chlorogenic acid. Food Hydrocoll 108:106019. https://doi.org/10.1016/j.foodhyd.2020.106019

    Article  CAS  Google Scholar 

  10. He D, **ng Y, Wang Y, Zeng W, Gao W, Su N, Zhang C, Chen H, **ng XH (2023) Improved functional properties of wheat gluten hydrolysate by covalent conjugation with chlorogenic acid. Int J Food Sci Technol 58:454–462. https://doi.org/10.1111/ijfs.16025

    Article  CAS  Google Scholar 

  11. Liu J, Liu S, Chen Y, Zhang L, Kan J, ** C (2017) Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids. Food Hydrocoll 71:176–186. https://doi.org/10.1016/j.foodhyd.2017.05.019

    Article  CAS  Google Scholar 

  12. Skopinska-Wisniewska J, Tuszynska M, Olewnik-Kruszkowska E (2021) Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials 14:396. https://doi.org/10.3390/ma14020396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nothling MD, Bailey CG, Fillbrook LL, Wang G, Gao Y, McCamey DR, Monfared M, Wong S, Beves JE, Stenzel MH (2022) Polymer grafting to polydopamine free radicals for universal surface functionalization. J Am Chem Soc 144:6992–7000. https://doi.org/10.1021/jacs.2c02073

    Article  CAS  PubMed  Google Scholar 

  14. Mohamady Hussein MA, Olmos JM, Pierański MK, Grinholc M, Buhl EM, Gunduz O, Youssef AM, Pereira CM, El-Sherbiny IM, Megahed M (2023) Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions. Int J Biol Macromol 233:123395. https://doi.org/10.1016/j.ijbiomac.2023.123395

    Article  CAS  PubMed  Google Scholar 

  15. Nuraini P, Puteri MM, Pramesty E (2021) Anti-biofilm activity of epigallocatechin gallate (EGCG) against Streptococcus mutans bacteria. Res J Pharm Technol 14:5019–5023. https://doi.org/10.52711/0974-360X.2021.00875

    Article  Google Scholar 

  16. Feilcke R, Bär V, Wendt C, Imming P (2023) Antibacterial and disinfecting effects of standardised tea extracts on more than 100 clinical isolates of methicillin-resistant Staphylococcus aureus. Plants 12:3440. https://doi.org/10.3390/plants12193440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raj R, Agarwal N, Raghavan S, Chakraborti T, Poluri KM, Pande G, Kumar D (2021) Epigallocatechin gallate with potent anti-Helicobacter pylori activity binds efficiently to its histone-like DNA binding protein. ACS Omega 6:3548–3570. https://doi.org/10.1021/acsomega.0c04763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noor Mohammadi T, Maung AT, Sato J, Sonoda T, Masuda Y, Honjoh K, Miyamoto T (2019) Mechanism for antibacterial action of epigallocatechin gallate and theaflavin-3, 3′-digallate on Clostridium perfringens. J Appl Microbiol 126:633–640. https://doi.org/10.1111/jam.14134

    Article  CAS  PubMed  Google Scholar 

  19. Siriphap A, Kiddee A, Duangjai A, Yosboonruang A, Pook-In G, Saokaew S, Suthienkul O, Rawangkan A (2022) Antimicrobial activity of the green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against clinical isolates of multidrug-resistant Vibrio cholerae. Antibiotics 11:518. https://doi.org/10.3390/antibiotics11040518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Zhang Y, Ma R, Sun W, Ji Z (2023) antibacterial activity of epigallocatechin gallate (EGCG) against Shigella flexneri. Int J Environ Res Public Health 20:4676. https://doi.org/10.3390/ijerph20064676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hao S, Yang D, Zhao L, Shi F, Ye G, Fu H, Lin J, Guo H, He R, Li J, Chen H, Khan MF, Li Y, Tang H (2021) EGCG-mediated potential inhibition of biofilm development and quorum sensing in Pseudomonas aeruginosa. Int J Mol Sci 22:4946. https://doi.org/10.3390/ijms22094946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moreno-Vásquez MJ, Plascencia-Jatomea M, Sánchez-Valdes S, Tanori-Córdova JC, Castillo-Yañez FJ, Quintero-Reyes IE, Graciano-Verdugo AZ (2021) Characterization of epigallocatechin-gallate-grafted chitosan nanoparticles and evaluation of their antibacterial and antioxidant potential. Polymers 13:1375. https://doi.org/10.3390/polym13091375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guzzo F, Scognamiglio M, Fiorentino A, Buommino E, D’Abrosca B (2020) Plant derived natural products against Pseudomonas aeruginosa and Staphylococcus aureus: antibiofilm activity and molecular mechanisms. Molecules 25:5024. https://doi.org/10.3390/molecules25215024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song H, Wang Q, He A, Li S, Guan X, Hu Y, Feng S (2022) Antioxidant activity, storage stability and in vitro release of epigallocatechin-3-gallate (EGCG) encapsulated in hordein nanoparticles. Food Chem 388:132903. https://doi.org/10.1016/j.foodchem.2022.132903

    Article  CAS  PubMed  Google Scholar 

  25. Cao J, Wang Q, Ma T, Bao K, Yu X, Duan Z, Shen X, Li C (2020) Effect of EGCG-gelatin biofilm on the quality and microbial composition of tilapia fillets during chilled storage. Food Chem 305:125454. https://doi.org/10.1016/j.foodchem.2019.125454

    Article  CAS  PubMed  Google Scholar 

  26. Nikoo M, Regenstein JM, Ahmadi Gavlighi H (2018) Antioxidant and antimicrobial activities of (-) -epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods. Compr Rev Food Sci Food Saf 17:732–753. https://doi.org/10.1111/1541-4337.12346

    Article  CAS  PubMed  Google Scholar 

  27. Eldeen IMS, Seow E-M, Abdullah R, Sulaiman SF (2011) In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp. S Afr J Bot 77:75–79. https://doi.org/10.1016/j.sajb.2010.05.009

    Article  Google Scholar 

  28. Chandrasekaran M, Venkatesalu V (2004) Antibacterial and antifungal activityof Syzygium jambolanum seeds. J Ethnopharmacol 91:105–108. https://doi.org/10.1016/j.jep.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  29. Chen F, Shi Z, Neoh KG, Kang ET (2009) Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng 104:30–39. https://doi.org/10.1002/bit.22363

    Article  CAS  PubMed  Google Scholar 

  30. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  31. Singh A, Benjakul S, Huda N, Xu C, Wu P (2020) Preparation and characterization of squid pen chitooligosaccharide–epigallocatechin gallate conjugates and their antioxidant and antimicrobial activities. RSC Adv 10:33196–33204. https://doi.org/10.1039/D0RA05548D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narmada IB, Sarasati A, Wicaksono S, Rezkita F, Wibawa KGP, Hayaza S, Nugraha AP (2020) Phytochemical screening, antioxidant activity, functional groups and chemical element characterization analysis of (-)-epigallocatechin-3-gallate (EGCG) in East Javanese Green Tea methanolic extract: an experimental in vitro study. Syst Rev Pharm 11:511–519. https://doi.org/10.31838/srp.2020.5.68

    Article  CAS  Google Scholar 

  33. Islam Z, Ali MH, Popelka A, Mall R, Ullah E, Ponraj J, Kolatkar PR (2021) Probing the fibrillation of lysozyme by nanoscale-infrared spectroscopy. J Biomol Struct Dyn 39:1481–1490. https://doi.org/10.1080/07391102.2020.1734091

    Article  CAS  PubMed  Google Scholar 

  34. Sadat A, Joye IJ (2020) Peak fitting applied to Fourier transform infrared and Raman spectroscopic analysis of proteins. Appl Sci 10:5918. https://doi.org/10.3390/app10175918

    Article  CAS  Google Scholar 

  35. Ghani A, Tabibiazar M, Mahmoudzadeh M, Golchinfar Z, Rad AH (2022) Evaluation of the effect of sage seed gum (Salvia macrosiphon) conjugation on physicochemical and antimicrobial properties of egg white protein. Int J Food Sci Technol 57:6824–6832. https://doi.org/10.1111/ijfs.16018

    Article  CAS  Google Scholar 

  36. **g H, Sun J, Mu Y, Obadi M, McClements DJ, Xu B (2020) Sonochemical effects on the structure and antioxidant activity of egg white protein–tea polyphenol conjugates. Food Funct 11:7084–7094. https://doi.org/10.1039/D0FO01636E

    Article  CAS  PubMed  Google Scholar 

  37. Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, Nebe BJ (2007) The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomat 28:4521–4534. https://doi.org/10.1016/j.biomaterials.2007.06.028

    Article  CAS  Google Scholar 

  38. Wang S, Liu W, Zheng J, Xu X (2016) Immobilization of horseradish peroxidase on modified PAN-based membranes for the removal of phenol from buffer solutions. Can J Chem Eng 94:865–871. https://doi.org/10.1002/cjce.22469

    Article  CAS  Google Scholar 

  39. Sharma H, Mutharasan R (2012) A novel pulsed-plasma approach for protein immobilization by grafting reactive amine groups on polyurethane-coated biosensors. Sens Actuators B Chem 173:569–574. https://doi.org/10.1016/j.snb.2012.07.040

    Article  CAS  Google Scholar 

  40. Božič M, Gorgieva S, Kokol V (2012) Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydr Polym 89:854–864. https://doi.org/10.1016/j.carbpol.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  41. Chen P, Cui H, Feng L, Yu J, Hayat K, Jia C, Zhang X, Ho CT (2022) Effect of the C-Ring structure of flavonoids on the yield of adducts formed by the linkage of the active site at the A-Ring and Amadori rearrangement products during the Maillard intermediate preparation. J Agric Food Chem 70:3280–3288. https://doi.org/10.1021/acs.jafc.1c07521

    Article  CAS  PubMed  Google Scholar 

  42. Peres I, Rocha S, do CarmoPereira M, Coelho M, Rangel M, Ivanova G (2010) NMR structural analysis of epigallocatechin gallate loaded polysaccharide nanoparticles. Carbohydr Polym 82:861–866. https://doi.org/10.1016/j.carbpol.2010.06.007

    Article  CAS  Google Scholar 

  43. Claaßen C, Claaßen MH, Truffault V, Sewald L, Tovar GE, Borchers K, Southan A (2018) Quantification of substitution of gelatin methacryloyl: best practice and current pitfalls. Biomacromol 19:42–52. https://doi.org/10.1021/acs.biomac.7b01221

    Article  CAS  Google Scholar 

  44. Yuan Y, Song Y, **g W, Wang Y, Yang X, Liu D (2014) Simultaneous determination of caffeine, gallic acid, theanine, (−)-epigallocatechin and (−)-epigallocatechin-3-gallate in green tea using quantitative 1 H-NMR spectroscopy. Anal Methods 6:907–914. https://doi.org/10.1039/C3AY41369A

    Article  CAS  Google Scholar 

  45. Zhang X, Tang J, Zhang Q, Liu Q, Li Y, Chen L, Wang C, Ma L (2019) Hydrodeoxygenation of lignin-derived phenolic compounds into aromatic hydrocarbons under low hydrogen pressure using molybdenum oxide as catalyst. Catal Today 319:41–47. https://doi.org/10.1016/j.cattod.2018.03.068

    Article  CAS  Google Scholar 

  46. Subramanian P, Lesniewski A, Kaminska I, Vlandas A, Vasilescu A, Niedziolka-Jonsson J, Pichonat E, Happy H, Boukherrou R, Szunerits S (2013) Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosens Bioelectron 50:239–243. https://doi.org/10.1016/j.bios.2013.06.026

    Article  CAS  PubMed  Google Scholar 

  47. Piran F, Khoshkhoo Z, Hosseini SE, Azizi MH (2020) Controlling the antioxidant activity of green tea extract through encapsulation in chitosan-citrate nanogel. J Food Qual 2020:7935420. https://doi.org/10.1155/2020/7935420

    Article  CAS  Google Scholar 

  48. Pandey P, Avula B, Khan IA, Khan SI, Navarro VJ, Doerksen RJ, Chittiboyina AG (2020) Potential modulation of human NAD [P] H-quinone oxidoreductase 1 (NQO1) by EGCG and its metabolites—a systematic computational study. Chem Res Toxicol 33:2749–2764. https://doi.org/10.1021/acs.chemrestox.9b00450

    Article  CAS  PubMed  Google Scholar 

  49. Ziabari AA, Ghodsi FE (2012) Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment. Sol Energy Mater Sol Cells 105:249–262. https://doi.org/10.1016/j.solmat.2012.05.014

    Article  CAS  Google Scholar 

  50. Kalinowska M, Sienkiewicz-Gromiuk J, Świderski G, Pietryczuk A, Cudowski A, Lewandowski W (2020) Zn (II) complex of plant phenolic chlorogenic acid: antioxidant, antimicrobial and structural studies. Materials 13:3745. https://doi.org/10.3390/ma13173745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li B, Zhang W, Ma H (2016) Physicochemical characterization of inclusion complex of catechin and glucosyl-β-cyclodextrin. Trop J Pharm Res 15:167–172. https://doi.org/10.4314/tjpr.v15i1.23

    Article  CAS  Google Scholar 

  52. He A, Guan X, Song H, Li S, Huang K (2020) Encapsulation of (−)-epigallocatechin-gallate (EGCG) in hordein nanoparticles. Food Biosci 37:100727. https://doi.org/10.1016/j.fbio.2020.100727

    Article  CAS  Google Scholar 

  53. Ferraro V, Madureira AR, Sarmento B, Gomes A, Pintado ME (2015) Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin, β-Lactoglobulin and Lactoferrin. Food Res Int 77:450–459. https://doi.org/10.1016/j.foodres.2015.08.024

    Article  CAS  Google Scholar 

  54. Liu F, Ma C, Gao Y, McClements DJ (2017) Food-grade covalent complexes and their application as nutraceutical delivery systems: a review. Compr Rev Food Sci Food Saf 16:76–95. https://doi.org/10.1111/1541-4337.12229

    Article  CAS  PubMed  Google Scholar 

  55. Wu X, Lu Y, Xu H, Lin D, He Z, Wu H, Liu L, Wang Z (2018) Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols. Food Chem 256:427–434. https://doi.org/10.1016/j.foodchem.2018.02.158

    Article  CAS  PubMed  Google Scholar 

  56. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009) Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecule 10:1923–1930. https://doi.org/10.1021/bm900325t

    Article  CAS  Google Scholar 

  57. Seo S, Karboune S, L’Hocine L, Yaylayan VA (2013) Characterization of glycated lysozyme with galactose, galactooligosaccharides and galactan: effect of glycation on functional properties of lysozyme. LWT—Food Sci Technol 53:44–53. https://doi.org/10.1016/j.lwt.2013.02.001

    Article  CAS  Google Scholar 

  58. Paiva L, Rego C, Lima E, Marcone M, Baptista J (2021) Comparative analysis of the polyphenols, caffeine, and antioxidant activities of green tea, white tea, and flowers from Azorean Camellia sinensis varieties affected by different harvested and processing conditions. Antioxidants 10:183. https://doi.org/10.3390/antiox10020183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by División de Ciencias Biológicas y de la Salud of Universidad de Sonora [Project DCBS- USO313007914].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design: MJMV, MICV, AAAF, and AZGV. MJMV, MICV, and ENMC performed the experimental work. AZGV supervised the work. Formal analysis: MJMV, and JATH. Writing—original draft preparation, review, and editing: MJMV, AGLA, IEQR, and AZGV. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abril Z. Graciano-Verdugo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Vásquez, M.J., Carretas-Valdez, M.I., Luque-Alcaraz, A.G. et al. Conjugation of Lysozyme and Epigallocatechin Gallate for Improving Antibacterial and Antioxidant Properties. Curr Microbiol 81, 264 (2024). https://doi.org/10.1007/s00284-024-03776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03776-9

Navigation