Log in

Reclassification of Some Exiguobacterium Species Based on Genome Analysis

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Exiguobacterium genus comprises Gram-stain-positive and facultatively anaerobic bacteria. Some Exiguobacterium species have previously shown significant high 16S rRNA gene sequence similarities with each other. This study evaluates the taxonomic classification of those Exiguobacterium species through comprehensive genome analysis. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values were determined for various Exiguobacterium species pairs. The ANI and dDDH values between Exiguobacterium enclense and Exiguobacterium indicum, Exiguobacterium aquaticum and Exiguobacterium mexicanum, Exiguobacterium soli and Exiguobacterium antarcticum, and Exiguobacterium sibiricum and Exiguobacterium artemiae were above the cut-off level (95–96% for ANI and 70% for dDDH) for species delineation. Based on the findings, we propose to reclassify Exiguobacterium enclense as a later heterotypic synonym of Exiguobacterium indicum, Exiguobacterium aquaticum as a later heterotypic synonym of Exiguobacterium mexicanum, Exiguobacterium soli as a later heterotypic synonym of Exiguobacterium antarcticum and Exiguobacterium sibiricum as a later heterotypic synonym of Exiguobacterium artemiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

References

  1. Collins MD, Lund BM, Farrow JAE, Schleifer KH (1983) Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. J Gen Microbiol 129(7):2037–2042. https://doi.org/10.1099/00221287-129-7-2037

    Article  CAS  Google Scholar 

  2. Chaturvedi P, Prabahar V, Manorama R, Pindi PK, Bhadra B, Begum Z, Shivaji S (2008) Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 58:2447–2453. https://doi.org/10.1099/ijs.0.2008/000067-0

    Article  CAS  PubMed  Google Scholar 

  3. Frühling A, Schumann P, Hippe H, Sträubler B, Stackebrandt E (2002) Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. Int J Syst Evol Microbiol 52(4):1171–1176. https://doi.org/10.1099/00207713-52-4-1171

    Article  PubMed  Google Scholar 

  4. Dastager SG, Mawlankar R, Sonalkar VV, Thorat MN, Mual P, Verma A, Krishnamurthi S, Tang SK, Li WJ (2015) Exiguobacterium enclense sp. nov., isolated from sediment. Int J Syst Evol Microbiol 65:1611–1616. https://doi.org/10.1099/ijs.0.000149

    Article  CAS  PubMed  Google Scholar 

  5. Liu F, Li Y, He W, Wang W, Zheng J, Zhang D (2021) Exiguobacterium algae sp. nov. and Exiguobacterium qingdaonense sp. nov., two novel moderately halotolerant bacteria isolated from the coastal algae. Antonie van Leeuwenhoek 114(9):1399–1406. https://doi.org/10.1007/s10482-021-01594-8

    Article  CAS  PubMed  Google Scholar 

  6. López-Cortés A, Schumann P, Pukall R, Stackebrandt E (2006) Exiguobacterium mexicanum sp. nov. and Exiguobacterium artemiae sp. nov., isolated from the brine shrimp Artemia franciscana. Syst Appl Microbiol 29(3):183–190. https://doi.org/10.1016/j.syapm.2005.09.007

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophiles 10(4):285–294. https://doi.org/10.1007/s00792-005-0497-5

    Article  CAS  PubMed  Google Scholar 

  8. Yumoto I, Hishinuma-Narisawa M, Hirota K, Shingyo T, Takebe F, Nodasaka Y, Matsuyama H, Hara I (2004) Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017. https://doi.org/10.1099/ijs.0.63129-0

    Article  CAS  PubMed  Google Scholar 

  9. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70(11):5607–5612. https://doi.org/10.1099/ijsem.0.004332

    Article  PubMed  PubMed Central  Google Scholar 

  10. Raichand R, Pareek S, Singh NK, Mayilraj S (2012) Exiguobacterium aquaticum sp. nov., a member of the genus Exiguobacterium. Int J Syst Evol Microbiol 62:2150–2155. https://doi.org/10.1099/ijs.0.035790-0

    Article  CAS  PubMed  Google Scholar 

  11. Zhang D, Zhu Z, Li Y, Li X, Guan Z, Zheng J (2021) Comparative genomics of Exiguobacterium reveals what makes a cosmopolitan bacterium. mSystems 6(4):e0038321. https://doi.org/10.1128/mSystems.00383-21

    Article  PubMed  Google Scholar 

  12. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8(1):12–24. https://doi.org/10.1039/C5AY02550H

    Article  Google Scholar 

  17. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12. https://doi.org/10.1186/gb-2004-5-2-r12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucl Acids Res 50(D1):D801–D807. https://doi.org/10.1093/nar/gkab902

    Article  CAS  PubMed  Google Scholar 

  20. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  24. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  25. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  28. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319. https://doi.org/10.7717/peerj.1319

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, Fink I, Pan JN, Yousef M, Fogarty EC, Trigodet F, Watson AR, Esen ÖC, Moore RM, Clayssen Q, Lee MD, Kivenson V, Graham ED, Merrill BD, Karkman A, Blankenberg D, Eppley JM, Sjödin A, Scott JJ, Vázquez-Campos X, McKay LJ, McDaniel EA, Stevens SLR, Anderson RE, Fuessel J, Fernandez-Guerra A, Maignien L, Delmont TO, Willis AD (2021) Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 6(1):3–6. https://doi.org/10.1038/s41564-020-00834-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee MD (2019) GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35(20):4162–4164. https://doi.org/10.1093/bioinformatics/btz188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buchfink B, **e C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  35. R Development Core Team (2022). R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, Vienna Austria. http://www.r-project.org/

  36. Dowle M, Srinivasan A (2022) data.table: Extension of ‘data.frame‘. R package version 1.14.6. https://CRAN.R-project.org/package=data.table

  37. Charif D, Lobry JR (2007) SeqinR 1.0–2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In: Bastolla U, Porto M, Roman HE, Vendruscolo M (eds) Structural Approaches to Sequence Evolution Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, pp 207–232

    Google Scholar 

  38. Qin QL, **e BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196(12):2210–2215. https://doi.org/10.1128/JB.01688-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68(1):461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  40. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37(4):463–464. https://doi.org/10.1099/00207713-37-4-463

    Article  Google Scholar 

  41. Liu GH, Narsing Rao MP, Dong ZY, Wang JP, Che JM, Chen QQ, Sengonca C, Liu B, Li WJ (2019) Genome-based reclassification of Bacillus okuhidensis as a later heterotypic synonym of Bacillus halodurans. Int J Syst Evol Microbiol 69(11):3599–3602. https://doi.org/10.1099/ijsem.0.003666

    Article  CAS  PubMed  Google Scholar 

  42. Teng JL, Tang Y, Huang Y, Guo FB, Wei W, Chen JH, Wong SS, Lau SK, Woo PC (2016) Phylogenomic analyses and reclassification of species within the genus Tsukamurella: insights to species definition in the post-genomic era. Front Microbiol 7:1137. https://doi.org/10.3389/fmicb.2016.01137

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  44. Auch AF, von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP, Göker M, Coates RC, Hadjithomas M, Pavlopoulos GA, Paez-Espino D, Yoshikuni Y, Visel A, Whitman WB, Garrity GM, Eisen JA, Hugenholtz P, Pati A, Ivanova NN, Woyke T, Klenk HP, Kyrpides NC (2017) 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 35:676–683. https://doi.org/10.1038/nbt.3886

    Article  CAS  PubMed  Google Scholar 

  46. Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their own taxonomy. ISME J 11(11):2399–2406. https://doi.org/10.1038/ismej.2017.113

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan Mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770. https://doi.org/10.1099/ijs.0.64508-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Exiguobacterium soli DSM 22015T genome sequence data were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doegov/ in collaboration with the user community. We thank Dr. Markus Göker (Leibniz Institute DSMZ) for permitting us to use Exiguobacterium soli DSM 22015T genome sequence.

Funding

This research was supported by the National Science and Technology Fundamental Resources Investigation Program of China (2021FY100900), Key Scientific and Technological Project of Heilongjiang Province of China (2021ZXJ03B05) and the Projects of the Heilongjiang Academy of Agricultural Sciences (CX23GG10). The author Shuang Wang was also supported by Introduction project of high-level talents in **njiang Uygur Autonomous Region. The author Syed Raziuddin Quadri extends his appreciation to the Deanship of Scientific Research at Northern Border University, Arar, Kingdom of Saudi Arabia for funding this research work through the project number NBU-FFR-2024–2046-03.

Author information

Authors and Affiliations

Authors

Contributions

MPNR supervised the study. SW designed the research and project outline. PJ, KW, AD and SRQ conducted the genome analysis. MPNR, HQ, PJ and KW revised the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manik Prabhu Narsing Rao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest that are relevant to the contents of this article.

Ethical Approval

This article does not contain any studies related to human participants or animals. Therefore, no ethical approval is involved.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Dhulappa, A., Quadri, S.R. et al. Reclassification of Some Exiguobacterium Species Based on Genome Analysis. Curr Microbiol 81, 186 (2024). https://doi.org/10.1007/s00284-024-03735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03735-4

Navigation