Log in

Integrated Information for Pathogenicity and Treatment of Spiroplasma

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Spiroplasma, belonging to the class Mollicutes, is a small, helical, motile bacterium lacking a cell wall. Its host range includes insects, plants, and aquatic crustaceans. Recently, a few human cases of Spiroplasma infection have been reported. The diseases caused by Spiroplasma have brought about serious economic losses and hindered the healthy development of agriculture. The pathogenesis of Spiroplasma involves the ability to adhere, such as through the terminal structure of Spiroplasma, colonization, and invasive enzymes. However, the exact pathogenic mechanism of Spiroplasma remains a mystery. Therefore, we systematically summarize all the information about Spiroplasma in this review article. This provides a reference for future studies on virulence factors and treatment strategies of Spiroplasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

MreB:

A type of actin

TCS:

A two-component system

ALP:

Adhesin-like protein

PRPs:

Pattern recognition proteins

BGs:

β-1,3-Glucans

LPSs:

Lipopolysaccharides

PGs:

Peptidoglycans

BGBP or BGRP:

β-Glucan binding or recognition protein

LGBP:

β-1,3-Glucan binding protein

GNBP or GNRP:

Gram-negative binding or recognition protein

PGBP or PGRP:

Peptidoglycan binding or recognition protein

proPO:

The prophenoloxidase system

P28:

A major protein in the cell membrane

ALP609:

The adhesin-like protein

ScARPs:

S. citri Adhesion-related proteins

EGF:

The epidermal growth factors

EGFR:

Epidermal growth factor receptor

FBLN7:

Fibulin7

PGK:

Phosphoglycerate kinase

2-PGE:

2-Phosphoglycerate

PEP:

Phosphoenolpyruvate

MrLGBP:

β-1, 3-Glucan binding protein

SeEnolase:

The Enolase of S. eriocheiris

RNAi:

RNA interference

GDSL:

The Gly-Asp-Ser-Leu family lipases

PTS:

The phosphotransferase system

PG:

Phosphatidylglycerol

AMPs:

Antimicrobial peptides

PT:

Pertussis toxin

T1SS-T9SS:

Type I to type IX secretion systems

ROS:

Reactive oxygen species

OTC:

Oxytetracycline

References

  1. Trachtenberg S (2004) Sha** and moving a Spiroplasma. J Mol Microbiol Biotechnol 7:78–87. https://doi.org/10.1159/000077872

    Article  CAS  PubMed  Google Scholar 

  2. Liu P, Zheng H, Meng Q, Terahara N, Gu W, Wang S, Zhao G et al (2017) Chemotaxis without conventional two-component system, based on cell polarity and aerobic conditions in helicity-switching swimming of Spiroplasma eriocheiris. Front Microbiol 8:58. https://doi.org/10.3389/fmicb.2017.00058

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bolaños LM, Servín-Garcidueñas LE, Martínez-Romero E (2015) Arthropod-Spiroplasma relationship in the genomic era. FEMS Microbiol Ecol 91:1–8. https://doi.org/10.1093/femsec/fiu008

    Article  CAS  PubMed  Google Scholar 

  4. Yang K, **e K, Zhu YX, Huo SM, Hoffmann A, Hong XY (2020) Wolbachia dominate Spiroplasma in the co-infected spider mite Tetranychus truncatus. Insect Mol Biol 29:19–37. https://doi.org/10.1111/imb.12607

    Article  CAS  PubMed  Google Scholar 

  5. Rattner R, Thapa SP, Dang T, Osman F, Selvaraj V, Maheshwari Y, Pagliaccia D et al (2021) Genome analysis of Spiroplasma citri strains from different host plants and its leafhopper vectors. BMC Genom 22:373. https://doi.org/10.1186/s12864-021-07637-8

    Article  CAS  Google Scholar 

  6. Yang D, Zha G, Li X, Gao H, Yu H (2017) Immune responses in the haemolymph and antimicrobial peptide expression in the abdomen of Apis mellifera challenged with Spiroplasma melliferum CH-1. Microb Pathog 112:279–287. https://doi.org/10.1016/j.micpath.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  7. Terahara N, Tulum I, Miyata M (2017) Transformation of crustacean pathogenic bacterium Spiroplasma eriocheiris and expression of yellow fluorescent protein. Biochem Biophys Res Commun 487:488–493. https://doi.org/10.1016/j.bbrc.2017.03.144

    Article  CAS  PubMed  Google Scholar 

  8. Garnier M, Foissac X, Gaurivaud P, Laigret F, Renaudin J, Saillard C, Bové JM (2001) Mycoplasmas, plants, insect vectors: a matrimonial triangle. C R Acad Sci III 324:923–928. https://doi.org/10.1016/s0764-4469(01)01372-5

    Article  CAS  PubMed  Google Scholar 

  9. Ozbek E, Miller SA, Meulia T, Hogenhout SA (2003) Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and malpighian tubules of the leafhopper Dalbulus maidis. J Invertebr Pathol 82:167–175. https://doi.org/10.1016/s0022-2011(03)00031-4

    Article  PubMed  Google Scholar 

  10. Martin GC, Denier M, Le Fleche-Mateos A (2023) Spiroplasma-induced uveitis mimicking congenital glaucoma in a newborn. Ophthalmology 130:255. https://doi.org/10.1016/j.ophtha.2022.06.007

    Article  PubMed  Google Scholar 

  11. Etienne N, Bret L, Le Brun C, Lecuyer H, Moraly J, Lanternier F, Hermine O et al (2018) Disseminated Spiroplasma apis infection in patient with Agammaglobulinemia, France. Emerg Infect Dis 24:2382–2386. https://doi.org/10.3201/eid2412.180567

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brown JS Jr (2003) Correlation of Mollicutes and their viruses with multiple sclerosis and other demyelinating diseases. Med Hypotheses 60:298–303. https://doi.org/10.1016/s0306-9877(02)00390-0

    Article  PubMed  Google Scholar 

  13. Roberts MC, Schwarz S (2016) Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. J Environ Qual 45:576–592. https://doi.org/10.2134/jeq2015.04.0207

    Article  CAS  PubMed  Google Scholar 

  14. Smilack JD (1999) The tetracyclines. Mayo Clin proc 74:727–729. https://doi.org/10.4065/74.7.727

    Article  CAS  PubMed  Google Scholar 

  15. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912. https://doi.org/10.1016/s0092-8674(01)00286-0

    Article  CAS  PubMed  Google Scholar 

  16. Gasparich GE (2010) Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals 38:193–203. https://doi.org/10.1016/j.biologicals.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  17. Raju BC, Nyland G, Meikle T, Purcell AH (1981) Helical, motile mycoplasmas associated with flowers and honey bees in California. Can J Microbiol 27:249–253. https://doi.org/10.1139/m81-038

    Article  CAS  PubMed  Google Scholar 

  18. Zheng HQ, Chen YP (2014) Detection of Spiroplasma melliferum in honey bee colonies in the US. J Invertebr Pathol 119:47–49. https://doi.org/10.1016/j.jip.2014.03.006

    Article  PubMed  Google Scholar 

  19. Fünfhaus A, Ebeling J, Genersch E (2018) Bacterial pathogens of bees. Curr Opin Insect Sci 26:89–96. https://doi.org/10.1016/j.cois.2018.02.008

    Article  PubMed  Google Scholar 

  20. Bi K, Huang H, Gu W, Wang J, Wang W (2008) Phylogenetic analysis of Spiroplasmas from three freshwater crustaceans (Eriocheir sinensis, Procambarus clarkia and Penaeus vannamei) in China. J Invertebr Pathol 99:57–65. https://doi.org/10.1016/j.jip.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  21. Matet A, Le Flèche-Matéos A, Doz F, Dureau P, Cassoux N (2020) Ocular Spiroplasma ixodetis in Newborns, France. Emerg Infect Dis 26:340–344. https://doi.org/10.3201/eid2602.191097

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eimer J, Fernström L, Rohlén L, Grankvist A, Loo K, Nyman E, Henningsson AJ et al (2022) Spiroplasma ixodetis infections in immunocompetent and immunosuppressed patients after tick exposure, Sweden. Emerg Infect Dis 28:1681–1685. https://doi.org/10.3201/eid2808.212524

    Article  PubMed  PubMed Central  Google Scholar 

  23. **u N, Yang C, Chen X, Long J, Qu P (2024) Rare Spiroplasma bloodstream infection in patient after surgery, China, 2022. Emerg Infect Dis 30:187–189. https://doi.org/10.3201/eid3001.230858

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lo WS, Ku C, Chen LL, Chang TH, Kuo CH (2013) Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense. Genome Biol Evol 5:1512–1523. https://doi.org/10.1093/gbe/evt108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Josenhans C, Suerbaum S (2002) The role of motility as a virulence factor in bacteria. Int J Med Microbiol 291:605–614. https://doi.org/10.1078/1438-4221-00173

    Article  CAS  PubMed  Google Scholar 

  26. Blake C, Christensen MN, Kovács ÁT (2021) Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact 34:15–25. https://doi.org/10.1094/mpmi-08-20-0225-cr

    Article  CAS  PubMed  Google Scholar 

  27. Mizutani M, Sasajima Y, Miyata M (2021) Force and stepwise movements of gliding motility in human pathogenic bacterium Mycoplasma pneumoniae. Front Microbiol 12:747905. https://doi.org/10.3389/fmicb.2021.747905

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shaevitz JW, Lee JY, Fletcher DA (2005) Spiroplasma swim by a processive change in body helicity. Cell 122:941–945. https://doi.org/10.1016/j.cell.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  29. Duret S, Danet JL, Garnier M, Renaudin J (1999) Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol 181:7449–7456. https://doi.org/10.1128/jb.181.24.7449-7456.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiyama H, Kakizawa S, Sasajima Y, Tahara YO, Miyata M (2022) Reconstitution of a minimal motility system based on Spiroplasma swimming by two bacterial actins in a synthetic minimal bacterium. Sci Adv. https://doi.org/10.1126/sciadv.abo7490

    Article  PubMed  PubMed Central  Google Scholar 

  31. Harne S, Duret S, Pande V, Bapat M, Béven L, Gayathri P (2020) MreB5 Is a determinant of rod-to-helical transition in the cell-wall-less bacterium Spiroplasma. Curr Biol 30:4753-4762.e7. https://doi.org/10.1016/j.cub.2020.08.093

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi D, Fujiwara I, Sasajima Y, Narita A, Imada K, Miyata M (2022) ATP-dependent polymerization dynamics of bacterial actin proteins involved in Spiroplasma swimming. Open Biol 12:220083. https://doi.org/10.1098/rsob.220083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lartigue C, Lambert B, Rideau F, Dahan Y, Decossas M, Hillion M, Douliez JP et al (2022) Cytoskeletal components can turn wall-less spherical bacteria into kinking helices. Nat Commun 13:6930. https://doi.org/10.1038/s41467-022-34478-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matilla MA, Krell T (2018) The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fux052

    Article  PubMed  Google Scholar 

  35. Daniels MJ, Longland JM, Gilbart J (1980) Aspects of motility and chemotaxis in Spiroplasmas. Microbiology 118:429–436. https://doi.org/10.1099/00221287-118-2-429

    Article  CAS  Google Scholar 

  36. el Ammar D, Fulton D, Bai X, Meulia T, Hogenhout SA (2004) An attachment tip and pili-like structures in insect-and plant-pathogenic spiroplasmas of the class Mollicutes. Arch Microbiol 181:97–105. https://doi.org/10.1007/s00203-003-0630-8

    Article  CAS  PubMed  Google Scholar 

  37. Jo EK (2019) Interplay between host and pathogen: immune defense and beyond. Exp Mol Med 51:1–3. https://doi.org/10.1038/s12276-019-0281-8

    Article  CAS  PubMed  Google Scholar 

  38. Zha GD, Yang DH, Wang JJ, Yang B, Yu HS (2018) Infection function of adhesin-like protein ALP609 from Spiroplasma melliferum CH-1. Curr Microbiol 75:701–708. https://doi.org/10.1007/s00284-018-1435-y

    Article  CAS  PubMed  Google Scholar 

  39. Rottem S (2003) Interaction of mycoplasmas with host cells. Physiol Rev 83:417–432. https://doi.org/10.1152/physrev.00030.2002

    Article  CAS  PubMed  Google Scholar 

  40. Hou L, Liu Y, Gao Q, Xu X, Ning M, Bi J, Liu H et al (2017) Spiroplasma eriocheiris adhesin-like protein (ALP) interacts with epidermal growth factor (EGF) domain proteins to facilitate infection. Front Cell Infect Microbiol 7:13. https://doi.org/10.3389/fcimb.2017.00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wróblewski H, Johansson KE, Hjérten S (1977) Purification and characterization of spiralin, the main protein of the Spiroplasma citri membrane. Biochim Biophys Acta 465:275–289. https://doi.org/10.1016/0005-2736(77)90079-7

    Article  PubMed  Google Scholar 

  42. Ye F, Melcher U, Fletcher J (1997) Molecular characterization of a gene encoding a membrane protein of Spiroplasma citri. Gene 189:95–100. https://doi.org/10.1016/s0378-1119(96)00840-2

    Article  CAS  PubMed  Google Scholar 

  43. Yu J, Wayadande AC, Fletcher J (2000) Spiroplasma citri surface protein P89 implicated in adhesion to cells of the vector Circulifer tenellus. Phytopathology 90:716–722. https://doi.org/10.1094/phyto.2000.90.7.716

    Article  CAS  PubMed  Google Scholar 

  44. Dubrana MP, Béven L, Arricau-Bouvery N, Duret S, Claverol S, Renaudin J, Saillard C (2016) Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts. BMC Microbiol 16:53. https://doi.org/10.1186/s12866-016-0666-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bastian FO (2014) The case for involvement of Spiroplasma in the pathogenesis of transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 73:104–114. https://doi.org/10.1097/nen.0000000000000033

    Article  PubMed  Google Scholar 

  46. Hou L, Gu W, Zhu H, Yao W, Wang W, Meng Q (2017) Spiroplasma eriocheiris induces mouse 3T6-Swiss albino cell apoptosis that associated with the infection mechanism. Mol Immunol 91:75–85. https://doi.org/10.1016/j.molimm.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  47. Béven L, Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Arricau-Bouvery N (2012) The repetitive domain of ScARP3d triggers entry of Spiroplasma citri into cultured cells of the vector Circulifer haematoceps. PLoS ONE 7:e48606. https://doi.org/10.1371/journal.pone.0048606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Béven L, Arricau-Bouvery N (2014) Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 16:1119–1132. https://doi.org/10.1111/cmi.12265

    Article  CAS  PubMed  Google Scholar 

  49. Desfougères Y, Poitou JM, Wróblewski H, Béven L (2016) An improved non-denaturing method for the purification of spiralin, the main membrane lipoprotein of the pathogenic bacteria Spiroplasma melliferum. J Chromatogr B Analyt Technol Biomed Life Sci 1036–1037:149–156. https://doi.org/10.1016/j.jchromb.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  50. Le Hénaff M, Crémet JY, Fontenelle C (2002) Purification and characterization of the major lipoprotein (P28) of Spiroplasma apis. Protein Expr Purif 24:489–496. https://doi.org/10.1006/prep.2001.1600

    Article  CAS  PubMed  Google Scholar 

  51. Wróblewski H (1981) Electrophoretic analysis of the arrangement of spiralin and other major proteins in isolated Spiroplasma citri cell membranes. J Bacteriol 145:61–67. https://doi.org/10.1128/jb.145.1.61-67.1981

    Article  PubMed  PubMed Central  Google Scholar 

  52. Castano S, Blaudez D, Desbat B, Dufourcq J, Wróblewski H (2002) Secondary structure of spiralin in solution, at the air/water interface, and in interaction with lipid monolayers. Biochim Biophys Acta 1562:45–56. https://doi.org/10.1016/s0005-2736(02)00366-8

    Article  CAS  PubMed  Google Scholar 

  53. Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL et al (2020) Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 10:200302. https://doi.org/10.1098/rsob.200302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ning M, **u Y, Yuan M, Bi J, Hou L, Gu W, Wang W et al (2019) Spiroplasma eriocheiris invasion into Macrobrachium rosenbergii hemocytes is mediated by pathogen enolase and host lipopolysaccharide and β-1, 3-glucan binding protein. Front Immunol 10:1852. https://doi.org/10.3389/fimmu.2019.01852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Labroussaa F, Dubrana MP, Arricau-Bouvery N, Béven L, Saillard C (2011) Involvement of a minimal actin-binding region of Spiroplasma citri phosphoglycerate kinase in Spiroplasma transmission by its leafhopper vector. PLoS ONE 6:e17357. https://doi.org/10.1371/journal.pone.0017357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Labroussaa F, Arricau-Bouvery N, Dubrana MP, Saillard C (2010) Entry of Spiroplasma citri into Circulifer haematoceps cells involves interaction between Spiroplasma phosphoglycerate kinase and leafhopper actin. Appl Environ Microbiol 76:1879–1886. https://doi.org/10.1128/aem.02384-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krucinska J, Lombardo MN, Erlandsen H, Hazeen A, Duay SS, Pattis JG, Robinson VL et al (2019) Functional and structural basis of E. coli enolase inhibition by SF2312: a mimic of the carbanion intermediate. Sci Rep. https://doi.org/10.1038/s41598-019-53301-3

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xue S, Seo K, Yang M, Cui C, Yang M, **ang S, Yan Z et al (2021) Mycoplasma suis alpha-enolase subunit vaccine induces an immune response in experimental animals. Vaccines (Basel) 9:1506. https://doi.org/10.3390/vaccines9121506

    Article  CAS  PubMed  Google Scholar 

  59. Song Z, Li Y, Liu Y, **n J, Zou X, Sun W (2012) α-Enolase, an adhesion-related factor of Mycoplasma bovis. PLoS ONE 7:e38836. https://doi.org/10.1371/journal.pone.0038836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Halbedel S, Hames C, Stülke J (2007) Regulation of carbon metabolism in the Mollicutes and its relation to virulence. J Mol Microbiol Biotechnol 12:147–154. https://doi.org/10.1159/000096470

    Article  CAS  PubMed  Google Scholar 

  61. Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Pérez-Martínez G, Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36:570–584. https://doi.org/10.1046/j.1365-2958.2000.01862.x

    Article  CAS  PubMed  Google Scholar 

  62. André A, Maccheroni W, Doignon F, Garnier M, Renaudin J (2003) Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the Spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology (Reading) 149:2687–2696. https://doi.org/10.1099/mic.0.26336-0

    Article  CAS  PubMed  Google Scholar 

  63. Gaurivaud P, Laigret F, Garnier M, Bove JM (2000) Fructose utilization and pathogenicity of Spiroplasma citri: characterization of the fructose operon. Gene 252:61–69. https://doi.org/10.1016/s0378-1119(00)00230-4

    Article  CAS  PubMed  Google Scholar 

  64. Liu P, Li Y, Ye Y, Chen J, Li R, Zhang Q, Li Y et al (2022) The genome and antigen proteome analysis of Spiroplasma mirum. Front Microbiol 13:996938. https://doi.org/10.3389/fmicb.2022.996938

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mudd JB, Lee IM, Liu HY, Calavan EC (1979) Comparison of the membrane composition of Spiroplasma citri and the corn stunt Spiroplasma. J Bacteriol 137:1056–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paredes JC, Herren JK, Schüpfer F, Lemaitre B (2016) The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. MBio. https://doi.org/10.1128/mBio.01006-16

    Article  PubMed  PubMed Central  Google Scholar 

  67. Swietnicki W (2021) Secretory system components as potential prophylactic targets for bacterial pathogens. Biomolecules 11:892. https://doi.org/10.3390/biom11060892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, Bueno NF et al (2019) Bacteria-killing type IV Secretion systems. Front Microbiol 10:1078. https://doi.org/10.3389/fmicb.2019.01078

    Article  PubMed  PubMed Central  Google Scholar 

  69. Slater SL, Sågfors AM, Pollard DJ, Ruano-Gallego D, Frankel G (2018) The type III secretion system of pathogenic Escherichia coli. Curr Top Microbiol Immunol 416:51–72. https://doi.org/10.1007/82_2018_116

    Article  CAS  PubMed  Google Scholar 

  70. Du XJ, Zhao XF, Wang JX (2007) Molecular cloning and characterization of a lipopolysaccharide and beta-1,3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Mol Immunol 44:1085–1094. https://doi.org/10.1016/j.molimm.2006.07.288

    Article  CAS  PubMed  Google Scholar 

  71. Meng Q, Hou L, Zhao Y, Huang X, Huang Y, **a S, Gu W et al (2014) iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Fish Shellfish Immunol 40:182–189. https://doi.org/10.1016/j.fsi.2014.06.029

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Miao Y, Shen Q, Liu X, Chen M, Du J, Ning M et al (2022) Eriocheir sinensis vesicle-associated membrane protein can enhance host cell phagocytosis to resist Spiroplasma eriocheiris infection. Fish Shellfish Immunol 128:582–591. https://doi.org/10.1016/j.fsi.2022.08.012

    Article  CAS  PubMed  Google Scholar 

  73. Saillard C, Carle P, Duret-Nurbel S, Henri R, Killiny N, Carrère S, Gouzy J et al (2008) The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome. BMC Genomics 9:195. https://doi.org/10.1186/1471-2164-9-195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, Selezneva O et al (2012) Application of Spiroplasma melliferum proteogenomic profiling for the discovery of virulence factors and pathogenicity mechanisms in host-associated Spiroplasmas. J Proteome Res 11:224–236. https://doi.org/10.1021/pr2008626

    Article  CAS  PubMed  Google Scholar 

  75. Bendix C, Lewis JD (2018) The enemy within: phloem-limited pathogens. Mol Plant Pathol 19:238–254. https://doi.org/10.1111/mpp.12526

    Article  CAS  PubMed  Google Scholar 

  76. Wroblewski H, Blanchard A, Nyström S, Wieslander A, Thomas D (1987) Amphiphilic properties of spiralin, the major surface antigen of Spiroplasmas. A preliminary report. Isr J Med Sci 23:439–441

    CAS  PubMed  Google Scholar 

  77. Arai H, Inoue MN, Kageyama D (2022) Male-killing mechanisms vary between Spiroplasma species. Front Microbiol 13:1075199. https://doi.org/10.3389/fmicb.2022.1075199

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ramirez P, Leavitt JC, Gill JJ, Mateos M (2022) Preliminary characterization of phage-like particles from the male-killing Mollicute Spiroplasma poulsonii (an endosymbiont of Drosophila). Curr Microbiol 80:6. https://doi.org/10.1007/s00284-022-03099-7

    Article  CAS  PubMed  Google Scholar 

  79. Griffin JS, Gerth M, Hurst GDD (2022) Rapid divergence in independent aspects of the compatibility phenotype in a Spiroplasma-Drosophila interaction. Microbiology. https://doi.org/10.1099/mic.0.001281

    Article  PubMed  Google Scholar 

  80. Herren JK, Lemaitre B (2011) Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain gram-negative bacterial pathogens in Drosophila melanogaster. Cell Microbiol 13:1385–1396. https://doi.org/10.1111/j.1462-5822.2011.01627.x

    Article  CAS  PubMed  Google Scholar 

  81. Nejat N, Vadamalai G, Sijam K, Dickinson M (2011) First report of Spiroplasma citri (-Induced) associated with periwinkle lethal yellows in Southeast Asia. Plant Dis 95:1312. https://doi.org/10.1094/pdis-03-11-0251

    Article  CAS  PubMed  Google Scholar 

  82. Liang T, Feng Q, Wu T, Gu W, Wang W (2009) Use of oxytetracycline for the treatment of tremor disease in the Chinese mitten crab Eriocheir sinensis. Dis Aquat Organ 84:243–250. https://doi.org/10.3354/dao02052

    Article  CAS  PubMed  Google Scholar 

  83. Schonell M, Dorken E, Grzybowski S (1972) Rifampin. Can Med Assoc J 106:783–786

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gadeau AP, Mouches C, Bove JM (1986) Probable insensitivity of mollicutes to rifampin and characterization of spiroplasmal DNA-dependent RNA polymerase. J Bacteriol 166:824–828. https://doi.org/10.1128/jb.166.3.824-828.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith JT (1986) Mechanism of action of quinolones. Infection. https://doi.org/10.1007/bf01645191

    Article  PubMed  Google Scholar 

  86. Aquilino A, Masiá M, López P, Galiana AJ, Tovar J, Andrés M, Gutiérrez F (2015) First human systemic infection caused by Spiroplasma. J Clin Microbiol 53:719–721. https://doi.org/10.1128/jcm.02841-14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) [32370209]; Natural Science Foundation of Hunan Province, China [2023JJ30503]; Research Foundation of Education Bureau of Hunan Province, China [22A0297]; Research Foundation of University of South China [190XQD015]; and Hunan Provincial College Students’ innovation and Entrepreneurship Training Program [220XCX564].

Author information

Authors and Affiliations

Authors

Contributions

YY and JX drafted the original manuscript. JC modified the manuscript. YL, RL and SZ prepared a part of graphic and text materials. QJ supervised the writing. PL conceived the idea. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Qichen Jiang or Peng Liu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Y., **ao, J., Chen, J. et al. Integrated Information for Pathogenicity and Treatment of Spiroplasma. Curr Microbiol 81, 252 (2024). https://doi.org/10.1007/s00284-024-03730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03730-9

Navigation