Log in

An Eclectic Review on Dicarboxylic Acid Production Through Yeast Cell Factories and Its Industrial Prominence

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Dicarboxylic acid (DCA) is a multifaceted chemical intermediate, recoursed to produce many industrially important products such as adhesives, plasticizers, lubricants, polymers, etc. To bypass the shortcomings of the chemical methods of synthesis of DCA and to reduce fossil fuel footprints, bio-based synthesis is gaining attention. In pursuit of an eco-friendly sustainable alternative method of DCA production, microbial cell factories, and renewable organic resources are gaining popularity. Among the plethora of microbial communities, yeast is being favored industrially compared to bacterial fermentation due to its hyperosmotic and low pH tolerance and flexibility for gene manipulations. By application of rapidly evolving genetic manipulation techniques, the bio-based DCA production could be made more precise and economical. To bridge the gap between supply and demand of DCA, many strategies are employed to improve the fermentation. This review briefly outlines the advancements in DCA production using yeast cell factories with the exemplification of strain improvement strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

There are no original data associated with this review manuscript and the relevant information provided has been cited appropriately.

Abbreviations

AA:

Adipic acid

CAGR:

Compound annual growth rate

DCA:

Dicarboxylic acid

FA:

Fumaric acid

GA:

Glutaric acid

GCA:

Glucaric acid

GRAS:

Generally recognized as safe

IA:

Itaconic acid

MA:

Malic acid

MCA:

Muconic acid

SA:

Succinic acid

TCA Cycle:

Tricarboxylic acid cycle

US DoE:

United States Department of Energy

References

  1. Lee JY, Lee SE, Lee DW (2022) Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Crit Rev Environ Sci Technol 52:2453–2509. https://doi.org/10.1080/10643389.2021.1880259

    Article  Google Scholar 

  2. Zhang X, Zhao Y, Liu Y et al (2020) Recent progress on bio-based production of dicarboxylic acids in yeast. Appl Microbiol Biotechnol 104:4259–4272. https://doi.org/10.1007/s00253-020-10537-8

    Article  CAS  PubMed  Google Scholar 

  3. Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I: results of screening for potential candidates from sugars and synthesis gas. US NREL. https://doi.org/10.2172/15008859

    Article  Google Scholar 

  4. De Jong E, Stichnothe H, Bell G, Jorgensen H (2020) Bio-based chemicals: a 2020 update. In: IEA Bioenergy task 42 biorefinery. pp 1–79

  5. Lidov RE, Neck G, Glenberg H, Bronx (1964) United States Patent Office (3,117,991). Preparation of fumaric acid by heating malic acid with maleic anhydride

  6. Choudhary H, Nishimura S, Ebitani K (2013) Metal-free oxidative synthesis of succinic acid from biomass-derived furan compounds using a solid acid catalyst with hydrogen peroxide. Appl Catal A 458:55–62. https://doi.org/10.1016/j.apcata.2013.03.033

    Article  CAS  Google Scholar 

  7. Kövilein A, Kubisch C, Cai L, Ochsenreither K (2020) Malic acid production from renewables: a review. J Chem Technol Biotechnol 95:513–526. https://doi.org/10.1002/jctb.6269

    Article  CAS  Google Scholar 

  8. Luo Z, Yu S, Zeng W, Zhou J (2021) Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 47:107706. https://doi.org/10.1016/j.biotechadv.2021.107706

    Article  CAS  PubMed  Google Scholar 

  9. Rahman A, Mupa M, Mahamadi C (2016) A mini review on new emerging trends for the synthesis of adipic acid from metal-nano heterogeneous catalysts. Catal Lett 146:788–799. https://doi.org/10.1007/s10562-015-1682-5

    Article  CAS  Google Scholar 

  10. Zhang J, Liang Q, **e W et al (2019) An eco-friendly method to get a bio-based dicarboxylic acid monomer 2,5-furandicarboxylic acid and its application in the synthesis of poly(hexylene 2,5-furandicarboxylate) (PHF). Polymers (Basel) 11:197. https://doi.org/10.3390/polym11020197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shiio I, Uchio R (1971) Microbial production of long-chain dicarboxylic acids from n-alkanes part T. Screening and properties of microorganisms producing dicarboxylic acids. Agric Biol Chem 35:2033–2042. https://doi.org/10.1080/00021369.1971.10860194

    Article  CAS  Google Scholar 

  12. Malubhoy Z, Bahia FM, de Valk SC et al (2022) Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb Cell Fact 21:1–15. https://doi.org/10.1186/s12934-022-01817-1

    Article  CAS  Google Scholar 

  13. Qian X, Xu N, **g Y et al (2020) Valorization of crude glycerol into citric acid and malic acid by Yarrowia lipolytica. Ind Eng Chem Res 59:17165–17172. https://doi.org/10.1021/acs.iecr.0c01723

    Article  CAS  Google Scholar 

  14. Lee H, Han C, Lee HW et al (2018) Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. Biotechnol Biofuels 11:1–14. https://doi.org/10.1186/s13068-018-1310-x

    Article  CAS  Google Scholar 

  15. Raj K, Partow S, Correia K et al (2018) Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab Eng Commun 6:28–32. https://doi.org/10.1016/j.meteno.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sugiharto YEC, Lee H, Fitriana AD, et al (2018) Effect of decanoic acid and 10-hydroxydecanoic acid on the biotransformation of methyl decanoate to sebacic acid. AMB Express 8:. https://doi.org/10.1186/s13568-018-0605-4

  17. Werner N, Dreyer M, Wagner W et al (2017) Candida guilliermondii as a potential biocatalyst for the production of long-chain α, ω-dicarboxylic acids. Biotechnol Lett 39:429–438. https://doi.org/10.1007/s10529-016-2264-3

    Article  CAS  PubMed  Google Scholar 

  18. Xu G, Liu L, Chen J (2012) Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb Cell Fact 11:1–10. https://doi.org/10.1186/1475-2859-11-24

    Article  CAS  Google Scholar 

  19. Chen N, Wang J, Zhao Y, Deng Y (2018) Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb Cell Fact 17:67. https://doi.org/10.1186/s12934-018-0914-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blazeck J, Miller J, Pan A et al (2014) Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98:8155–8164. https://doi.org/10.1007/s00253-014-5895-0

    Article  CAS  PubMed  Google Scholar 

  21. Cui Z, Gao C, Li J et al (2017) Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metab Eng 42:126–133. https://doi.org/10.1016/j.ymben.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  22. Rong L, Miao L, Wang S et al (2022) Engineering Yarrowia lipolytica to produce itaconic acid from waste cooking oil. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.888869

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kamzolova SV, Morgunov IG (2013) α-Ketoglutaric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97:5517–5525. https://doi.org/10.1007/s00253-013-4772-6

    Article  CAS  PubMed  Google Scholar 

  24. NCBI (2020) Yarrowia lipolytica (ID 194)—Genome—NCBI. https://www.ncbi.nlm.nih.gov/datasets/taxonomy/284591/ Accessed 21 Feb 2024

  25. Cao W, Li H, Luo J et al (2017) High-level productivity of α, ω-dodecanedioic acid with a newly isolated Candida viswanathii strain. J Ind Microbiol Biotechnol 44:1191–1202. https://doi.org/10.1007/s10295-017-1948-6

    Article  CAS  PubMed  Google Scholar 

  26. Ju JH, Oh BR, Heo SY et al (2020) Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis. Bioprocess Biosyst Eng 43:33–43. https://doi.org/10.1007/s00449-019-02202-w

    Article  CAS  PubMed  Google Scholar 

  27. Lee H, Sugiharto YEC, Lee S et al (2017) Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Appl Microbiol Biotechnol 101:6333–6342. https://doi.org/10.1007/s00253-017-8321-6

    Article  CAS  PubMed  Google Scholar 

  28. Kogure T, Horiuchi H, Matsuda H et al (2007) Enhanced induction of cytochromes P450alk that oxidize methyl-ends of n-alkanes and fatty acids in the long-chain dicarboxylic acid-hyperproducing mutant of Candida maltosa. FEMS Microbiol Lett 271:106–111. https://doi.org/10.1111/j.1574-6968.2007.00705.x

    Article  CAS  PubMed  Google Scholar 

  29. Green KD, Turner MK, Woodley JM (2000) Candida cloacae oxidation of long-chain fatty acids to dioic acids. Enzyme Microb Technol 27:205–211. https://doi.org/10.1016/S0141-0229(00)00217-9

    Article  CAS  PubMed  Google Scholar 

  30. Chan E-C, Kuo J (1997) Biotransformation of dicarboxylic acid by immobilized Cryptococcus cells. Enzyme Microb Technol 20:585–589. https://doi.org/10.1016/S0141-0229(96)00198-6

    Article  CAS  Google Scholar 

  31. Fujie N, Ito M, Kishida M et al (2022) Metabolic engineering of Schizosaccharomyces pombe for itaconic acid production. J Biotechnol 358:111–117. https://doi.org/10.1016/j.jbiotec.2022.09.006

    Article  CAS  PubMed  Google Scholar 

  32. De Graeve M, Van de Velde I, Saey L et al (2019) Production of long-chain hydroxy fatty acids by Starmerella bombicola. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz067

    Article  PubMed  Google Scholar 

  33. **ao H, Shao Z, Jiang Y et al (2014) Exploiting Issatchenkia orientalis SD108 for succinic acid production. Microb Cell Fact 13:1–11. https://doi.org/10.1186/s12934-014-0121-4

    Article  CAS  Google Scholar 

  34. Pyne ME, Bagley JA, Narcross L et al (2023) Screening non-conventional yeasts for acid tolerance and engineering Pichia occidentalis for production of muconic acid. Nat Commun 14:5294. https://doi.org/10.1038/s41467-023-41064-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun W, Vila-Santa A, Liu N et al (2020) Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metab Eng Commun 10:e00124. https://doi.org/10.1016/j.mec.2020.e00124

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Gong X, Wang C et al (2016) Production of glucaric acid from myo-inositol in engineered Pichia pastoris. Enzyme Microb Technol 91:8–16. https://doi.org/10.1016/j.enzmictec.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Qian Z, Zhong J (2018) Advances in bio-based production of dicarboxylic acids longer than C4. Eng Life Sci 18:668–681. https://doi.org/10.1002/elsc.201800023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang M, Ma J, Wu M et al (2017) Progress of succinic acid production from renewable resources: metabolic and fermentative strategies. Bioresour Technol 245:1710–1717. https://doi.org/10.1016/j.biortech.2017.05.209

    Article  CAS  PubMed  Google Scholar 

  39. Lee H, Sugiharto YEC, Lee H et al (2019) Biotransformation of dicarboxylic acids from vegetable oil–derived sources: current methods and suggestions for improvement. Appl Microbiol Biotechnol 103:1545–1555. https://doi.org/10.1007/s00253-018-9571-7

    Article  CAS  PubMed  Google Scholar 

  40. Mitrea L, Călinoiu L-F, Teleky B-E et al (2022) Waste cooking oil and crude glycerol as efficient renewable biomass for the production of platform organic chemicals through oleophilic yeast strain of Yarrowia lipolytica. Environ Technol Innov 28:102943. https://doi.org/10.1016/j.eti.2022.102943

    Article  CAS  Google Scholar 

  41. Chen X, Wang Y, Dong X et al (2017) Engineering rTCA pathway and C4-dicarboxylate transporter for l-malic acid production. Appl Microbiol Biotechnol 101:4041–4052. https://doi.org/10.1007/s00253-017-8141-8

    Article  CAS  PubMed  Google Scholar 

  42. Bechthold I, Bretz K, Kabasci S et al (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654. https://doi.org/10.1002/ceat.200800063

    Article  CAS  Google Scholar 

  43. Pais C, Franco-Duarte R, Sampaio P, et al (2016) Production of dicarboxylic acid platform chemicals using yeasts. In: Biotransformation of agricultural waste and by-products. Elsevier, Amsterdam pp 237–269. . https://doi.org/10.1016/B978-0-12-803622-8.00009-4

  44. Succinic Acid Market_Global Industry Report, 2031. https://www.transparencymarketresearch.com/succinic-acid.html Accessed 20 Feb 2024

  45. Gao C, Yang X, Wang H et al (2016) Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol Biofuels 9:1–11. https://doi.org/10.1186/s13068-016-0597-8

    Article  CAS  Google Scholar 

  46. Jost B, Holz M, Aurich A et al (2015) The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica. Appl Microbiol Biotechnol 99:1675–1686. https://doi.org/10.1007/s00253-014-6252-z

    Article  CAS  PubMed  Google Scholar 

  47. Raab AM, Gebhardt G, Bolotina N et al (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12:518–525. https://doi.org/10.1016/j.ymben.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  48. Yan D, Wang C, Zhou J et al (2014) Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresour Technol 156:232–239. https://doi.org/10.1016/j.biortech.2014.01.053

    Article  CAS  PubMed  Google Scholar 

  49. Ito Y, Hirasawa T, Shimizu H (2014) Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Biosci Biotechnol Biochem 78:151–159. https://doi.org/10.1080/09168451.2014.877816

    Article  CAS  PubMed  Google Scholar 

  50. Fumaric Acid Market Size, Forecast, Trend Analysis to 2032. https://www.factmr.com/report/526/fumaric-acid-market Accessed 19 Feb 2024

  51. Xu G, Zou W, Chen X et al (2012) Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS ONE 7:1–10. https://doi.org/10.1371/journal.pone.0052086

    Article  CAS  Google Scholar 

  52. Xu G, Chen X, Liu L, Jiang L (2013) Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes. Bioresour Technol 148:91–96. https://doi.org/10.1016/j.biortech.2013.08.115

    Article  CAS  PubMed  Google Scholar 

  53. Global Malic Acid Market Size & Share | Industry Report, 2019-2025. https://www.imarcgroup.com/malic-acid-technical-material-market-report Accessed 20 Feb 2024

  54. Zelle RM, De Hulster E, Kloezen W et al (2010) Key process conditions for production of C4 dicarboxylic acids in bioreactor Batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 76:744–750. https://doi.org/10.1128/AEM.02396-09

    Article  CAS  PubMed  Google Scholar 

  55. FMI Glutaric acid Market | Global Sales Analysis Report—2032. https://www.futuremarketinsights.com/reports/glutaric-acid-during-market Accessed 21 Feb 2024

  56. Kamzolova SV, Chiglintseva MN, Lunina JN, Morgunov IG (2012) α-Ketoglutaric acid production by Yarrowia lipolytica and its regulation. Appl Microbiol Biotechnol 96:783–791. https://doi.org/10.1007/s00253-012-4222-x

    Article  CAS  PubMed  Google Scholar 

  57. Yin X, Madzak C, Du G et al (2012) Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 96:1527–1537. https://doi.org/10.1007/s00253-012-4192-z

    Article  CAS  PubMed  Google Scholar 

  58. Baup S (1836) Ueber eine neue Pyrogen-Citronensäure, und über Benennung der Pyrogen-Säuren überhaupt. Annalen der Pharmacie 19:29–38. https://doi.org/10.1002/jlac.18360190107

    Article  Google Scholar 

  59. Kinoshita K (1931) Uber eine neue Aspergillus art A. itaconicus. Bot Mag 45:45–50

    Article  Google Scholar 

  60. Komáromy P, Bakonyi P, Kucska A et al (2019) Optimized pH and its control strategy lead to enhanced itaconic acid fermentation by Aspergillus terreus on glucose substrate. Fermentation 5:31. https://doi.org/10.3390/fermentation5020031

    Article  CAS  Google Scholar 

  61. **e H, Ma Q, Wei D, Wang F (2020) Metabolic engineering of an industrial Aspergillus niger strain for itaconic acid production. 3 Biotech 10:113. https://doi.org/10.1007/s13205-020-2080-2

    Article  PubMed  PubMed Central  Google Scholar 

  62. Becker J, Hosseinpour Tehrani H, Ernst P et al (2020) An optimized Ustilago maydis for itaconic acid production at maximal theoretical yield. J Fungi 7:20. https://doi.org/10.3390/jof7010020

    Article  CAS  Google Scholar 

  63. Huang X, Lu X, Li Y et al (2014) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Fact 13:119. https://doi.org/10.1186/s12934-014-0119-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Itaconic acid market size, Trends and forecast to 2030. https://www.coherentmarketinsights.com/market-insight/itaconic-acid-market-5487#:~:text=The%20global%20itaconic%20acid%20market,the%20forecast%20period%202022%2D2030 Accessed 21 Feb 2024

  65. Li G, Huang D, Sui X et al (2020) Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. React Chem Eng 5:221–238. https://doi.org/10.1039/C9RE00338J

    Article  CAS  Google Scholar 

  66. Adipic Acid Market Size, Trends and Forecast to 2030. https://www.grandviewresearch.com/industry-analysis/adipic-acid-market Accessed 20 Feb 2024

  67. Skoog E, Shin JH, Saez-Jimenez V et al (2018) Biobased adipic acid—the challenge of develo** the production host. Biotechnol Adv 36:2248–2263. https://doi.org/10.1016/J.BIOTECHADV.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  68. Glucaric acid market size, trends, share growth 2023–2028. https://www.expertmarketresearch.com/reports/glucaric-acid-market Accessed 21 Feb 2024

  69. Smith TN, Hash K, Davey C-L et al (2012) Modifications in the nitric acid oxidation of d-glucose. Carbohydr Res 350:6–13. https://doi.org/10.1016/j.carres.2011.12.024

    Article  CAS  PubMed  Google Scholar 

  70. Moon TS, Yoon S-H, Lanza AM et al (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595. https://doi.org/10.1128/AEM.00973-08

    Article  CAS  PubMed  Google Scholar 

  71. Shiue E, Prather KLJ (2014) Improving d-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport. Metab Eng 22:22–31. https://doi.org/10.1016/j.ymben.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  72. Gupta A, Hicks MA, Manchester SP, Prather KLJ (2016) Porting the synthetic d-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae. Biotechnol J. https://doi.org/10.1002/biot.201500563

    Article  PubMed  Google Scholar 

  73. Muconic acid market size, share, trends and forecast 2023–2028. https://www.imarcgroup.com/muconic-acid-market#:~:text=The%20global%20muconic%20acid%20market,5.9%25%20during%202023%2D2028 Accessed 19 Feb 2024

  74. Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from d-glucose. J Am Chem Soc 116:399–400. https://doi.org/10.1021/ja00080a057

    Article  CAS  Google Scholar 

  75. Weber C, Brückner C, Weinreb S et al (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78:8421–8430. https://doi.org/10.1128/AEM.01983-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Curran KA, Leavitt JM, Karim AS, Alper HS (2013) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55–66. https://doi.org/10.1016/j.ymben.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  77. Wang G, Tavares A, Schmitz S et al (2022) An integrated yeast-based process for cis, cis-muconic acid production. Biotechnol Bioeng 119:376–387. https://doi.org/10.1002/bit.27992

    Article  CAS  PubMed  Google Scholar 

  78. Agathokleous E (2022) European Union’s imminent ban on glyphosate: hormesis should be considered in new chemical screening and selection. J For Res (Harbin) 33:1103–1107. https://doi.org/10.1007/s11676-022-01474-5

    Article  CAS  Google Scholar 

  79. Marshall A, Jiang B, Gauvin RM, Thomas CM (2022) 2,5-furandicarboxylic acid: an intriguing precursor for monomer and polymer synthesis. Molecules 27:4071. https://doi.org/10.3390/molecules27134071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dayan FE, Owens DK, Duke SO (2012) Rationale for a natural products approach to herbicide discovery. Pest Manag Sci 68:519–528. https://doi.org/10.1002/ps.2332

    Article  CAS  PubMed  Google Scholar 

  81. Matolcsy et al (1989) United States Patent (Patent number-4,846,883). Succinic acid derivatives and plant growth regulating compositions containing them

  82. Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37:1391–1413. https://doi.org/10.1002/marc.201600181

    Article  CAS  PubMed  Google Scholar 

  83. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552. https://doi.org/10.1007/s002530051431

    Article  CAS  Google Scholar 

  84. Nomura K, Binti Awang NW (2021) Synthesis of bio-based aliphatic polyesters from plant oils by efficient molecular catalysis: a selected survey from recent reports. ACS Sustain Chem Eng 9:5486–5505. https://doi.org/10.1021/acssuschemeng.1c00493

    Article  CAS  Google Scholar 

  85. Sharif R, Mohsin M, Sardar S et al (2022) Synthesis of nontoxic and bio based oil and water repellent polymers for cotton fabrics using stearic acid, succinic acid, and itaconic acid. J Natural Fibers 19:12473–12485. https://doi.org/10.1080/15440478.2022.2072995

    Article  CAS  Google Scholar 

  86. Morancho JM, Ramis X, Fernández-Francos X et al (2020) Dual curing of an epoxy resin with dicarboxylic acids. J Therm Anal Calorim 142:607–615. https://doi.org/10.1007/s10973-020-09523-z

    Article  CAS  Google Scholar 

  87. Mankar AR, Pandey A, Modak A, Pant KK (2021) Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol 334:125235. https://doi.org/10.1016/j.biortech.2021.125235

    Article  CAS  PubMed  Google Scholar 

  88. Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G (2022) Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 54:107795. https://doi.org/10.1016/j.biotechadv.2021.107795

    Article  CAS  PubMed  Google Scholar 

  89. Mishra P, Park G-Y, Lakshmanan M et al (2016) Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnol Bioeng 113:1993–2004. https://doi.org/10.1002/bit.25955

    Article  CAS  PubMed  Google Scholar 

  90. Chae TU, Ahn JH, Ko YS et al (2020) Metabolic engineering for the production of dicarboxylic acids and diamines. Metab Eng 58:2–16. https://doi.org/10.1016/J.YMBEN.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  91. Bauwelinck J, Wijnants M, Tavernier S, Cornet I (2020) The evaluation of oleic acid alternatives for the biochemical production of 9-octadecenedioic acid. Biochem Eng J 161:107660. https://doi.org/10.1016/j.bej.2020.107660

    Article  CAS  Google Scholar 

  92. Eggert A, Maßmann T, Kreyenschulte D et al (2019) Integrated in-situ product removal process concept for itaconic acid by reactive extraction, pH-shift back extraction and purification by pH-shift crystallization. Sep Purif Technol 215:463–472. https://doi.org/10.1016/j.seppur.2019.01.011

    Article  CAS  Google Scholar 

  93. Omwene PI, Öcal ZB, Yağcıoğlu M et al (2022) Novel chromatographic purification of succinic acid from whey fermentation broth by anionic exchange resins. Bioprocess Biosyst Eng 45:2007–2017. https://doi.org/10.1007/s00449-022-02805-w

    Article  CAS  PubMed  Google Scholar 

  94. McDowall SC, Braune M, Nitzsche R (2022) Recovery of bio-based medium-chain fatty acids with membrane filtration. Sep Purif Technol 286:120430. https://doi.org/10.1016/J.SEPPUR.2021.120430

    Article  CAS  Google Scholar 

  95. Zahoor A, Küttner FTF, Blank LM, Ebert BE (2019) Evaluation of pyruvate decarboxylase-negative Saccharomyces cerevisiae strains for the production of succinic acid. Eng Life Sci 19:711–720. https://doi.org/10.1002/elsc.201900080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Guo F, Dai Z, Peng W et al (2021) Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng 118:357–371. https://doi.org/10.1002/bit.27575

    Article  CAS  PubMed  Google Scholar 

  97. Chen N, Wang J, Zhao Y, Deng Y (2018) Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer. Microb Cell Fact 17:1–11. https://doi.org/10.1186/s12934-018-0914-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Young EM, Zhao Z, Gielesen BEM et al (2018) Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metab Eng 48:33–43. https://doi.org/10.1016/j.ymben.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  99. Leavitt JM, Wagner JM, Tu CC et al (2017) Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol J 12:1–31. https://doi.org/10.1002/biot.201600687

    Article  CAS  Google Scholar 

  100. Bauwelinck J, Caluwé M, Wijnants M et al (2021) Chocolate industry side streams as a valuable feedstock for microbial long-chain dicarboxylic acid production. Biochem Eng J. https://doi.org/10.1016/j.bej.2020.107888

    Article  Google Scholar 

Download references

Funding

We are grateful to the Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur for the financial and infrastructure support to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

Ramalingam Kayalvizhi and Jayacumar Sanjana equally share the first authorship and are involved in the literature collection, drafting of the manuscript, and illustration preparations. Vinod Kumar provided valuable inputs and critical suggestions for manuscript improvement. Samuel Jacob is responsible for the technical inputs and finalization of the manuscript.

Corresponding authors

Correspondence to Samuel Jacob or Vinod Kumar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 486 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayalvizhi, R., Sanjana, J., Jacob, S. et al. An Eclectic Review on Dicarboxylic Acid Production Through Yeast Cell Factories and Its Industrial Prominence. Curr Microbiol 81, 147 (2024). https://doi.org/10.1007/s00284-024-03654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03654-4

Navigation