Log in

Obtaining Osmo-resistant Mutants in Nitrogen-Fixing Bacteria Isolated from Saline Soils

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Annually, about, more than 7% of the Earth’s land area becomes inappropriate for agriculture subsequently of salinization and desertification. Biofertilizers based on halophilic nitrogen-fixing bacteria can restore saline soils and stimulate plant growth, having a positive effect on germination, development of stems and roots, and fruiting. The aim of this work was to obtain osmo-resistant (Osm-r) nitrogen-fixing mutants isolated from saline soils of Armenia and selection of the best ones. To achieve this goal, we have obtained a collection of Osm-r strains based on soil nitrogen-fixing bacteria without the use of genetically modified technologies, which is an innovation in sphere of soil microbiology, and, especially, in nitrogen-fixing microorganisms. These mutants were obtained on the basis of Agrobacterium sp. Y-2 and Agrobacterium sp. M-1 nitrogen-fixing strains, both spontaneously and induced. Four strains with the higher nitrogen-fixing ability, which kept their vital activity in an environment with a high concentration of salts, were selected from collection of mutants. Selected strains in the future can become the basis for creating a new, effective, environmentally friendly biofertilizer for saline soils because they are plasmidless and have the highest priority for intensive use in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

Consent for Publication

All authors agree to the publication.

References

  1. Tilman D (1998) The greening of the green revolution. Nature 396(6708):211–212

    Article  CAS  Google Scholar 

  2. Gyaneshwar P, Kumar G, Parekh L et al (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  3. Souza Silva C, Fay E (2012) Effect of salinity on soil microorganisms. In: HernandezSoriano MC (ed) Soil health and land use management. InTechOpen, Rijeka, pp 177–198. https://doi.org/10.5772/28613

    Chapter  Google Scholar 

  4. Rietz D, Haynes J (2003) Effects of irrigation induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  5. Tejada M, Gonzalez J (2005) Beet vinasse applied to wheat under dry land conditions affect soil properties and yield. Eur J Agron 23(4):336–347

    Article  Google Scholar 

  6. Mohan V, Menon S (2015) Diversity status of beneficial microflora in saline soils of Tamil Nadu and Pudhucherry in Southern India. J Acad Ind Res 3(8):384–392

    Google Scholar 

  7. Cleveland C, Townsend A, Schimel D et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles l13(2):623–645. https://vonfischerlab.colostate.edu/wp-content/uploads/2010/03/Cleveland-etal-BGC-1999-Global-N2-Fixation.pdf

  8. Vitousek P, Aber J, Howarth R et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

    Article  Google Scholar 

  9. Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui Z (ed) PGPR: biocontrol and biofertilization. Springer, Berlin, pp 1–38. https://doi.org/10.1007/1-4020-4152-7_1

    Chapter  Google Scholar 

  10. Mohammed M, Chernet M, Tuji F (2020) Phenotypic, stress tolerance, and plant growth promoting characteristics of rhizobial isolates of grass pea. Int Microbiol 23(4):607–618. https://doi.org/10.1007/s10123-020-00131-3

    Article  CAS  PubMed  Google Scholar 

  11. Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subba Rao N, Dommergues Y (eds) Microbial interactions in agriculture and forestry, 2. Science Publishers, Inc., Enfield, pp 229–250

    Google Scholar 

  12. Kumaar M, Babu P, Vivek p et al (2020) Role of nitrogen fixers as biofertilizers in future perspective: a review. Res J Pharm Technol. 13(5):2459–2467. https://doi.org/10.5958/0974-360X.2020.00440.0

  13. Melkonyan L, Avetisova G, Chakhalyan A et al (2017) Biotechnological approaches for obtaining of new complex biopreparation for organic agriculture. In: FEMS 2017 Abstract book. FEMS7-1142. Available via DIALOG. Abstract 337. https://fems-microbiology.org/app/uploads/2020/05/FEMS2017_abstracts-book.pdf

  14. Dobbelaere S, Croonenborghs A, Thys A et al (2001) Response of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28(9):871–879. https://doi.org/10.1071/PP01074

    Article  Google Scholar 

  15. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  Google Scholar 

  16. Correa O, Montecchia M, Berti M et al (2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. App Soil Ecol 41(2):185–194

    Article  Google Scholar 

  17. Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39(1):1–7

    Article  CAS  Google Scholar 

  18. Jiang H, Dong H, Yu B et al (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan Plateau. Environ Microbiol 9(10):2603–2621

    Article  CAS  Google Scholar 

  19. Glick B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  20. Doran J, Sarrantonio M, Liebig M (1996) Soil health and sustainability. Adv Agron 56:2–54

    Google Scholar 

  21. Fravel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  Google Scholar 

  22. Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  23. Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 2011(1):1–30. https://www.researchgate.net/publication/284340739_Plant_growth_promoting_rhizobacteria_a_critical_review

  24. Xu Y, Zhang G, Ding H, Ci D, Dai L, Zhang Z (2020) Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). Int Microbiol 23(3):453–465. https://doi.org/10.1007/s10123-020-00118-0

    Article  CAS  PubMed  Google Scholar 

  25. Neumivakin L, Piruzyan E, Solovyov V et al (1966) Patent RF 2061666. https://elibrary.ru/item.asp?id=38039143

  26. Keleshyan S, Karapetyan Z, Toplaghaltsyan A et al (2019) Characteristics of the microflora of saline soils of Armenia. SPFP 1:76–85. https://www.spfp-mgupp.ru/jour/article/view/9/9

  27. Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160(2):127–133. https://doi.org/10.1016/j.micres.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Zani S, Mellon M, Collier J et al (2000) Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol 66(7):3119–3124. https://doi.org/10.1128/aem.66.7.3119-3124.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Sheng XF, He LY, Huang Z (2015) Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 65(2):412–417. https://doi.org/10.1099/ijs.0.064428-0

    Article  CAS  PubMed  Google Scholar 

  30. Wright E, Yilmaz L, Noguera D (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78(3):717–725. https://doi.org/10.1128/AEM.06516-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avetisova G, Melkonyan L, Chakhalyan A et al (2014) Selection of new highly active l-alanine producer strains of Brevibacterium flavum and comparison of their activity in alanine synthesis. Russ J Genet Appl Res 4(1):23–26. https://doi.org/10.1134/S207905971401002X

    Article  Google Scholar 

  32. Mokula R, Charyulu P (2012) Nitrogen fixation by the native Azospirillum spp. isolated from rhizosphere and non-rhizosphere of foxtail millet. Asian J Biol Life Sci 1(3):213–218. https://www.ajbls.com/sites/default/files/AsianJBiolLifeSci_1_3_213.pdf

  33. Zehr J, Jenkins B, Short S et al (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5(7):539–554. https://doi.org/10.1046/j.1462-2920.2003.00451.x

    Article  CAS  PubMed  Google Scholar 

  34. Gaby J, Buckley D (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014:bau001. https://doi.org/10.1093/database/bau001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Phung T, Manucharova N, Stepanov A et al (2015) Agrobacterium tumefaciens as associative nitrogen-fixing bacteria. Mosc Univ Soil Sci Bull 70(3):133–138. https://doi.org/10.3103/S0147687415030047

    Article  Google Scholar 

  36. Swenson C, Sadikot R (2015) Achromobacter respiratory infections. Ann Am Thorac Soc 12(2):252–258. https://doi.org/10.1513/AnnalsATS.201406-288FR

    Article  PubMed  Google Scholar 

  37. Herliana O, Harjoso T, Anwar A et al (2019) The effect of Rhizobium and N fertilizer on growth and yield of black soybean (Glycine max (L) Merril). IOP Conf Ser Earth Environ Sci 255:012015. https://doi.org/10.1088/1755-1315/255/1/012015

    Article  Google Scholar 

  38. Reinprecht Y, Schram L, Marsolais F et al (2020) Effects of nitrogen application on nitrogen fixation in common bean production. Front Plant Sci 11:1172. https://doi.org/10.3389/fpls.2020.01172

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gaby C, Buckley H (2011) A global census of nitrogenase diversity. Environ Microbiol 13(7):1790–1799. https://doi.org/10.1111/j.1462-2920.2011.02488.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the Science Committee of the Republic of Armenia for financing of this research.

Funding

The study was funded by the Science Committee of the Ministry of Education and Science of the Republic of Armenia within the framework of the Armenian-Belarusian International Project AB16-52 RA MES SCN-FFIRB-2016 (2017–2019). Thanks to the funding, some chemicals were purchased and the identification of nitrogen-fixing strains was carried out.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work conception and design. Conceptualization: SKK, AAV; Methodology: GYA, LHM, ZVK; Formal analysis and investigation: SKK, ZVK, AGT; Writing—original draft preparation: SKK; Writing—review and editing: SKK, VTG; Funding acquisition: SKK, ZVK, AGT, GYA; Resources: VTG; Supervision: KK, AAV. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Susanna Kazar Keleshyan.

Ethics declarations

Conflict of interest

Susanna Keleshyan, Zhaneta Karapetyan, Anna Toplaghaltsyan, Gayane Avetisova, Lusine Melkonyan, Andranik Vardanyan, Vahe Ghochikyan declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

All authors agree to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keleshyan, S.K., Karapetyan, Z.V., Toplaghaltsyan, A.G. et al. Obtaining Osmo-resistant Mutants in Nitrogen-Fixing Bacteria Isolated from Saline Soils. Curr Microbiol 79, 251 (2022). https://doi.org/10.1007/s00284-022-02948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02948-9

Navigation