Log in

Genome-Based Analysis of Aspergillus niger Aggregate Species from China and Their Potential for Fumonisin B2 and Ochratoxin A Production

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Based on entire genome sequencing, this study focused on the classification of Aspergillus niger aggregation species and investigated their potential for fumonisin B2 (FB2) and ochratoxin A (OTA) production. In the current study, 22 strains were used, namely 17 A. niger strains, four A. welwitschiae strains, and one A. lacticoffeatus (a synonym of A. niger) strain. Traditional multigene phylogenetic analysis, average nucleotide identity analysis (ANI), and the whole-genome single-nucleotide polymorphism (SNP) analyses were used to reconfirm the taxonomic status of A. niger, A. welwitschiae, and A. lacticoffeatus. The ability of A. niger to produce FB2 and OTA on five culture substrates was determined, and the association between FB2 and OTA gene clusters and toxin-producing abilities was explored. The results revealed that the ANI method could distinguish A. niger from A. welwitschiae, with an ANI value of < 98%. The SNP-based phylogenetic analysis suggested that A. niger and A. welwitschiae were two independent phylogenetic species. The ANI, SNP, and multigene phylogenetic analysis supported previous findings that A. lacticoffeatus was a synonymous species of A. niger. Aspergillus niger strains exhibited the varied potential of producing FB2 and OTA on different culture media. The A. niger genome sequence analysis revealed no significant difference in fumonisin gene clusters between FB2-nonproducing isolates and FB2-producing isolates, and the integrity of the ochratoxin biosynthesis genes cluster was clearly associated with OTA production. In conclusion, gene sequencing can be useful in assessing A. niger’s ability to produce OTA, but it cannot reliably predict its ability to produce FB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Samson RA, Houbraken JAMP, Kuijpers AFA, Frank JM, Frisvad JC (2004) New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud Mycol 50(1):45–61. https://doi.org/10.1023/B:MYCO.0000012225.79969.29

    Article  Google Scholar 

  2. Ismail MA (2017) Incidence and significance of black aspergilli in agricultural commodities: a review, with a key to all species accepted to-date. Eur J Biol Res 7(3):207–222. https://doi.org/10.5281/zenodo.834504

    Article  CAS  Google Scholar 

  3. Fennell DI (1965) The genus Aspergillus. The Williams & Wilkins, Philadelphia

    Google Scholar 

  4. Varga J, Kevei F, Hamari Z, Tóth B, Téren J, Croft JH, Kozakiewicz Z (2000) Genotypic and phenotypic variability among black aspergilli. Integration of methods modern taxonomic for Penicillium and Aspergillus classification. CRC Press, Boca Raton, pp 394–411

    Google Scholar 

  5. Pitt JI, Hocking AD (2009) Fungi and food spoilage. Springer, Boston

    Book  Google Scholar 

  6. Hong SB, Yamada O, Samson RA (2014) Taxonomic re-evaluation of black koji molds. Appl Microbiol Biotechnol 98(2):555–561. https://doi.org/10.1007/s00253-013-5332-9

    Article  CAS  PubMed  Google Scholar 

  7. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CH, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsubé S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173. https://doi.org/10.1016/j.simyco.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Varga J, Frisvad JC, Kocsubé S, Brankovics B, Tóth B, Szigeti G, Samson RA (2011) New and revisited species in Aspergillus section Nigri. Stud Mycol 69(1):1–17. https://doi.org/10.3114/sim.2011.69.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA (2011) Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol 115(11):1138–1150. https://doi.org/10.1016/j.funbio.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  10. Cardoso BB, Silvério SC, Abrunhosa L, Teixeira JA, Rodrigues LR (2017) β-galactosidase from Aspergillus lacticoffeatus: a promising biocatalyst for the synthesis of novel prebiotics. Int J Food Microbiol 257:67–74. https://doi.org/10.1016/j.ijfoodmicro.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  11. Figueredo HM, Gonçalves VN, Godinho VM, Lopes DV, Oliveira FS, Rosa LH (2020) Diversity and ecology of cultivable fungi isolated from the thermal soil gradients in Deception Island, Antarctica. Extremophiles 24(2):219–225. https://doi.org/10.1007/s00792-019-01146-z

    Article  CAS  PubMed  Google Scholar 

  12. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (2002) On the safety of Aspergillus niger–a review. Appl Microbiol Biotechnol 59(4–5):426–435. https://doi.org/10.1007/s00253-002-1032-6

    Article  CAS  PubMed  Google Scholar 

  13. Gherbawy Y, Elhariry H, Kocsubé S, Bahobial A, Deeb BE, Altalhi A, Varga J, Vágvölgyi C (2015) Molecular characterization of black Aspergillus species from onion and their potential for ochratoxin A and fumonisin B2 production. Foodborne Pathog Dis 12(5):414–423. https://doi.org/10.1089/fpd.2014.1870

    Article  CAS  PubMed  Google Scholar 

  14. Gil-Serna J, García-Díaz M, Vázquez C, González-Jaén MT, Patiño B (2019) Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce mycotoxins. Food Microbiol 82:240–248. https://doi.org/10.1016/j.fm.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  15. Jessica GS, Covadonga V, María G-J, Po B (2018) Wine contamination with ochratoxins: a review. Beverages 4(1):6. https://doi.org/10.3390/beverages4010006

    Article  CAS  Google Scholar 

  16. Susca A, Proctor RH, Butchko RA, Haidukowski M, Stea G, Logrieco A, Moretti A (2014) Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli. Fungal Genet Biol 73:39–52. https://doi.org/10.1016/j.fgb.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  17. Susca A, Proctor RH, Morelli M, Haidukowski M, Gallo A, Logrieco AF, Moretti A (2016) Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins. Front Microbiol 7:1412. https://doi.org/10.3389/fmicb.2016.01412

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vanzela DOA, Massi FP, de Oliveira ALM, Fungaro MHP, Sartori D (2020) Isolation and Identification of Aspergillus section Nigri, and genotype associated with ochratoxin A and fumonisin B(2) production in garlic marketed in Brazil. Curr Microbiol 77(7):1150–1158. https://doi.org/10.1007/s00284-020-01915-6

    Article  CAS  PubMed  Google Scholar 

  19. Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA, Cabrera J, Torres O, Gelderblom WC, Allegood J, Martínez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH Jr (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134(4):711–716. https://doi.org/10.1093/jn/134.4.711

    Article  CAS  PubMed  Google Scholar 

  20. Palumbo JD, O’Keeffe TL, Gorski L (2013) Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains. Mycologia 105(2):277–284. https://doi.org/10.3852/11-418

    Article  CAS  PubMed  Google Scholar 

  21. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25(2):221–231. https://doi.org/10.1038/nbt1282

    Article  PubMed  Google Scholar 

  22. Massi FP, Sartori D, de Souza FL, Iamanaka BT, Taniwaki MH, Vieira MLC, Fungaro MHP (2016) Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae. Int J Food Microbiol 221:19–28. https://doi.org/10.1016/j.ijfoodmicro.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  23. Brown DW, Butchko RA, Busman M, Proctor RH (2007) The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6(7):1210–1218. https://doi.org/10.1128/ec.00400-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RA (2006) Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem 54(6):2424–2430. https://doi.org/10.1021/jf0527706

    Article  CAS  PubMed  Google Scholar 

  25. Petzinger E, Weidenbach A (2002) Mycotoxins in the food chain: the role of ochratoxins. Livestock Prod Sci 76(3):245–250. https://doi.org/10.1016/S0301-6226(02)00124-0

    Article  Google Scholar 

  26. Sedmikova M, Reisnerova H, Dufkova Z, Barta I (2001) Potential hazard of simultaneous occurrence of aflatoxin B1 and ochratoxin A. Vet Med 46(6):169–174. https://doi.org/10.1016/S0093-691X(01)00534-9

    Article  CAS  Google Scholar 

  27. Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, Nielsen KF (2011) Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS ONE 6(8):e23496. https://doi.org/10.1371/journal.pone.0023496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gallo A, Knox BP, Bruno KS, Solfrizzo M, Baker SE, Perrone G (2014) Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int J Food Microbiol 179:10–17. https://doi.org/10.1016/j.ijfoodmicro.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  29. Domijan AM (2012) Fumonisin B(1): a neurotoxic mycotoxin. Arh Hig Rada Toksikol 63(4):531–544. https://doi.org/10.2478/10004-1254-63-2012-2239

    Article  CAS  PubMed  Google Scholar 

  30. Pena A, Duarte SC, Silva LJG, Lino CM (2011) Food analysis of ochratoxin A and fumonisins B1 and B2: state-of-the-art. Food Qual 2011:61

    Google Scholar 

  31. Watanabe M, Lee K, Goto K, Kumagai S, Sugita-Konishi Y, Hara-Kudo Y (2010) Rapid and effective DNA extraction method with bead grinding for a large amount of fungal DNA. J Food Prot 73(6):1077–1084. https://doi.org/10.4315/0362-028x-73.6.1077

    Article  CAS  PubMed  Google Scholar 

  32. White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pcr Protoc A Guide Methods Appl 1:315–322. https://doi.org/10.0000/PMID1793

    Article  Google Scholar 

  33. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong SB, Cho HS, Shin HD, Frisvad JC, Samson RA (2006) Novel Neosartorya species isolated from soil in Korea. Int J Syst Evol Microbiol 56(Pt 2):477–486. https://doi.org/10.1099/ijs.0.63980-0

    Article  CAS  PubMed  Google Scholar 

  35. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oren A, Garrity GM (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek 106(1):43–56. https://doi.org/10.1007/s10482-013-0084-1

    Article  PubMed  Google Scholar 

  37. Kim M, Oh HS, Park SC, Chun J (2014) Toward a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(Pt 2):346–351. https://doi.org/10.1099/ijs.0.059774-0

    Article  PubMed  Google Scholar 

  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(Pt 1):81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  39. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  CAS  PubMed  Google Scholar 

  41. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  PubMed  Google Scholar 

  42. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12. https://doi.org/10.1186/gb-2004-5-2-r12

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12(4):656–664. https://doi.org/10.1101/gr.229202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jurka J (1996) Origin and evolution of Alu repetitive elements. The impact of short interspersed elements (SINEs) on the host genome. Springer Verlag, Berlin

    Google Scholar 

  46. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  Google Scholar 

  47. Esteban A, Abarca ML, Bragulat MR, Cabañes FJ (2004) Effects of temperature and incubation time on production of ochratoxin A by black aspergilli. Res Microbiol 155(10):861–866. https://doi.org/10.1016/j.resmic.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  48. Esteban A, Abarca ML, Bragulat MR, Cabañes FJ (2006) Study of the effect of water activity and temperature on ochratoxin A production by Aspergillus carbonarius. Food Microbiol 23(7):634–640. https://doi.org/10.1016/j.fm.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  49. Fanelli F, Schmidt-Heydt M, Haidukowski M, Geisen R, Logrieco A (2012) Influence of light on growth, conidiation and the mutual regulation of fumonisin B2 and ochratoxin A biosynthesis by Aspergillus niger. World Mycotoxin J. https://doi.org/10.3920/WMJ2011.1364

    Article  Google Scholar 

  50. Abarca ML, Bragulat MR, Castellá G, Cabañes FJ (2019) Impact of some environmental factors on growth and ochratoxin A production by Aspergillus niger and Aspergillus welwitschiae. Int J Food Microbiol 291:10–16. https://doi.org/10.1016/j.ijfoodmicro.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  51. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55(23):9727–9732. https://doi.org/10.1021/jf0718906

    Article  CAS  PubMed  Google Scholar 

  52. Han X, Jiang H, Xu J, Zhang J, Li F (2017) Dynamic fumonisin B2 production by Aspergillus niger intented used in food industry in China. Toxins 9(7):217. https://doi.org/10.3390/toxins9070217

    Article  CAS  PubMed Central  Google Scholar 

  53. van Gent M, Bart MJ, van der Heide HG, Heuvelman KJ, Kallonen T, He Q, Mertsola J, Advani A, Hallander HO, Janssens K, Hermans PW, Mooi FR (2011) SNP-based ty**: a useful tool to study Bordetella pertussis populations. PLoS ONE 6(5):e20340. https://doi.org/10.1371/journal.pone.0020340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32. https://doi.org/10.1006/fgbi.2000.1228

    Article  CAS  PubMed  Google Scholar 

  55. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9(1):5114. https://doi.org/10.1038/s41467-018-07641-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alshahni MM, Yamada T, Yo A, Murayama SY, Kuroda M, Hoshino Y, Ishikawa J, Watanabe S, Makimura K (2018) Insight into the draft whole-genome sequence of the dermatophyte Arthroderma vanbreuseghemii. Sci Rep 8(1):15127. https://doi.org/10.1038/s41598-018-33505-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wibberg D, Stadler M, Lambert C, Bunk B, Spröer C, Rückert C, Kalinowski J, Cox RJ, Kuhnert E (2021) High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Divers 106(1):7–28. https://doi.org/10.1007/s13225-020-00447-5

    Article  Google Scholar 

  58. Schleusener V, Homolka S, Niemann S, Fellenberg K (2014) Next-generation genoty** of _Mycobacterium tuberculosis_ complex strains based on SNP-data. In: 35th Congress of the European Society of Mycobacteriology

  59. Thomas E, Pakala S, Fedorova ND, Nierman WC, Cubeta MA (2012) Triallelic SNP-mediated genoty** of regenerated protoplasts of the heterokaryotic fungus Rhizoctonia solani. J Biotechnol 158(3):144–150. https://doi.org/10.1016/j.jbiotec.2012.01.024

    Article  CAS  PubMed  Google Scholar 

  60. Turankar RP (2014) Molecular genoty** of M. leprae using SNP and VNTR from an endemic region of the eastern part of India. In: 29th Biennial Conference of Indian Association of Leprologists on March 28–30.

  61. Cabaes FJ, Bragulat MR (2018) Black aspergilli and ochratoxin A-producing species in foods. Curr Opin Food Sci 23:1–10. https://doi.org/10.1016/j.cofs.2018.01.006

    Article  Google Scholar 

  62. Abarca ML, Accensi F, Cano J, Cabañes FJ (2004) Taxonomy and significance of black aspergilli. Antonie Van Leeuwenhoek 86(1):33–49. https://doi.org/10.1023/b:anto.0000024907.85688.05

    Article  CAS  PubMed  Google Scholar 

  63. Taniwaki MH, Pitt JI, Teixeira AA, Iamanaka BT (2003) The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods. Int J Food Microbiol 82(2):173–179. https://doi.org/10.1016/s0168-1605(02)00310-0

    Article  CAS  PubMed  Google Scholar 

  64. Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA (2008) Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. Int J Food Microbiol 128(2):197–202. https://doi.org/10.1016/j.ijfoodmicro.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  65. Perrone G, Mulè G, Susca A, Battilani P, Pietri A, Logrieco A (2006) Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger strains isolated from grapes in Italy. Appl Environ Microbiol 72(1):680–685. https://doi.org/10.1128/aem.72.1.680-685.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Magnoli C, Astoreca A, Ponsone L, Fernández-Juri MG, Chiacchiera S, Dalcero A (2010) Ochratoxin A and the occurrence of ochratoxin A-producing black aspergilli in stored peanut seeds from Córdoba, Argentina. J Sci Food Agric 86(14):2369–2373. https://doi.org/10.1002/jsfa.2625

    Article  CAS  Google Scholar 

  67. Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA (2009) Fumonisin B2 production by Aspergillus niger in Thai coffee beans. Food Addit Contam Part A 26(1):94–100. https://doi.org/10.1080/02652030802366090

    Article  CAS  Google Scholar 

  68. Mogensen JM, Frisvad JC, Thrane U, Nielsen KF (2010) Production of fumonisin B2 and B4 by Aspergillus niger on grapes and raisins. J Agric Food Chem 58(2):954–958. https://doi.org/10.1021/jf903116q

    Article  CAS  PubMed  Google Scholar 

  69. Somma S, Perrone G (2012) Diversity of black Aspergilli and mycotoxin risks in grape, wine and dried vine fruits. Phytopathol Mediterr. https://doi.org/10.14601/Phytopathol_Mediterr-9888

    Article  Google Scholar 

  70. Varga J, Kocsubé S, Suri K, Szigeti G, Szekeres A, Varga M, Tóth B, Bartók T (2010) Fumonisin contamination and fumonisin producing black Aspergilli in dried vine fruits of different origin. Int J Food Microbiol 143(3):143–149. https://doi.org/10.1016/j.ijfoodmicro.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  71. Kocube S, Varga J, Sigeti D, Baranji N, Mesterhazi A (2013) Aspergillus species as mycotoxin producers in agricultural products in central Europe. Zbornik Matice Srpske Za Prirodne Nauke 2013(124):13–25. https://doi.org/10.2298/ZMSPN1324013K

    Article  Google Scholar 

  72. Bluhm BH, Woloshuk CP (2005) Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact 18(12):1333–1339. https://doi.org/10.1094/mpmi-18-1333

    Article  CAS  PubMed  Google Scholar 

  73. Kim H, Woloshuk CP (2008) Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 45(6):947–953. https://doi.org/10.1016/j.fgb.2008.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2018YFC1603800). I would like to thank the editor, reviewers, and Sagesci company to help modify the language of the paper.

Author information

Authors and Affiliations

Authors

Contributions

FB contributed to writing—original draft preparation and writing—review & editing. CC, PW, and LS contributed to data curation and formal analysis. TZ and HL contributed to software. LZ and LS contributed to resources. SY contributed to project administration, supervision, and conceptualization.

Corresponding author

Correspondence to Su Yao.

Ethics declarations

Conflict of interest

All authors declare no they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, F., Cai, C., Zhang, T. et al. Genome-Based Analysis of Aspergillus niger Aggregate Species from China and Their Potential for Fumonisin B2 and Ochratoxin A Production. Curr Microbiol 79, 193 (2022). https://doi.org/10.1007/s00284-022-02876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02876-8

Navigation