Log in

Regulatory T lymphocytes as a therapy for ischemic stroke

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Unrestrained excessive inflammatory responses exacerbate ischemic brain injury and impede post-stroke brain recovery. CD4+CD25+Foxp3+ regulatory T (Treg) cells play important immunosuppressive roles to curtail inflammatory responses and regain immune homeostasis after stroke. Accumulating evidence confirms that Treg cells are neuroprotective at the acute stage after stroke and promote brain repair at the chronic phases. The beneficial effects of Treg cells are mediated by diverse mechanisms involving cell–cell interactions and soluble factor release. Multiple types of cells, including both immune cells and non-immune CNS cells, have been identified to be cellular targets of Treg cells. In this review, we summarize recent findings regarding the function of Treg cells in ischemic stroke and the underlying cellular and molecular mechanisms. The protective and reparative properties of Treg cells endorse them as good candidates for immune therapy. Strategies that boost the numbers and functions of Treg cells have been actively develo** in the fields of transplantation and autoimmune diseases. We discuss the approaches for Treg cell expansion that have been tested in stroke models. The application of these approaches to stroke patients may bring new hope for stroke treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nishizuka Y, Sakakura T (1969) Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 166:753–755

    Article  CAS  PubMed  Google Scholar 

  2. Kojima A, Prehn RT (1981) Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics 14:15–27

    Article  CAS  PubMed  Google Scholar 

  3. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  4. Munoz-Rojas AR, Mathis D (2021) Tissue regulatory T cells: regulatory chameleons. Nat Rev Immunol 21:597–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anrather J, Iadecola C (2016) Inflammation and stroke: an overview. Neurotherapeutics 13:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rayasam A, Hsu M, Hernández G, Kijak J, Lindstedt A, Gerhart C, Sandor M, Fabry Z (2017) Contrasting roles of immune cells in tissue injury and repair in stroke: the dark and bright side of immunity in the brain. Neurochem Int 107:104–116

    Article  CAS  PubMed  Google Scholar 

  7. Seifert HA, Collier LA, Chapman CB, Benkovic SA, Willing AE, Pennypacker KR (2014) Pro-inflammatory interferon gamma signaling is directly associated with stroke induced neurodegeneration. J Neuroimmune Pharmacol 9:679–689

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113:2105–2112

    Article  PubMed  Google Scholar 

  9. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  CAS  PubMed  Google Scholar 

  10. Ralainirina N, Poli A, Michel T, Poos L, Andrès E, Hentges F, Zimmer J (2007) Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol 81:144–153

    Article  CAS  PubMed  Google Scholar 

  11. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, Kondo T, Sakai R, Matsuo K, Nakayama T, Yoshie O, Nakatsukasa H, Chikuma S, Shichita T, Yoshimura A (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565:246–250

    Article  CAS  PubMed  Google Scholar 

  12. Yan J, Greer JM, Etherington K, Cadigan GP, Cavanagh H, Henderson RD, O’Sullivan JD, Pandian JD, Read SJ, McCombe PA (2009) Immune activation in the peripheral blood of patients with acute ischemic stroke. J Neuroimmunol 206:112–117

    Article  CAS  PubMed  Google Scholar 

  13. Urra X, Cervera A, Villamor N, Planas AM, Chamorro A (2009) Harms and benefits of lymphocyte subpopulations in patients with acute stroke. Neuroscience 158:1174–1183

    Article  CAS  PubMed  Google Scholar 

  14. Mao L, Li P, Zhu W, Cai W, Liu Z, Wang Y, Luo W, Stetler RA, Leak RK, Yu W, Gao Y, Chen J, Chen G, Hu X (2017) Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain 140:1914–1931

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD (2006) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176:6523–6531

    Article  CAS  PubMed  Google Scholar 

  17. Santamaria-Cadavid M, Rodriguez-Castro E, Rodriguez-Yanez M, Arias-Rivas S, Lopez-Dequidt I, Perez-Mato M, Rodriguez-Perez M, Lopez-Loureiro I, Hervella P, Campos F, Castillo J, Iglesias-Rey R, Sobrino T (2020) Regulatory T cells participate in the recovery of ischemic stroke patients. BMC Neurol 20:68

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yan J, Read SJ, Henderson RD, Hull R, O’Sullivan JD, McCombe PA, Greer JM (2012) Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol 243:89–94

    Article  CAS  PubMed  Google Scholar 

  19. Pang X, Qian W (2017) Changes in regulatory T-cell levels in acute cerebral ischemia. J Neurol Surg A Cent Eur Neurosurg 78:374–379

    Article  PubMed  Google Scholar 

  20. Zhang J, Liu G, Chen D, Wang Z, Chen D, Liu Y, Yu W (2020) The combination of CC chemokine receptor type 5(CCR5) and Treg cells predicts prognosis in patients with ischemic stroke. J Neuroimmunol 349:577404

    Article  CAS  PubMed  Google Scholar 

  21. Ruhnau J, Schulze J, von Sarnowski B, Heinrich M, Langner S, Potschke C, Wilden A, Kessler C, Broker BM, Vogelgesang A, Dressel A (2016) Reduced numbers and impaired function of regulatory T cells in peripheral blood of ischemic stroke patients. Mediators Inflamm 2016:2974605

    Article  PubMed  PubMed Central  Google Scholar 

  22. Foy TM, Page DM, Waldschmidt TJ, Schoneveld A, Laman JD, Masters SR, Tygrett L, Ledbetter JA, Aruffo A, Claassen E, Xu JC, Flavell RA, Oehen S, Hedrick SM, Noelle RJ (1995) An essential role for gp39, the ligand for CD40, in thymic selection. J Exp Med 182:1377–1388

    Article  CAS  PubMed  Google Scholar 

  23. Li P, Wang L, Zhou Y, Gan Y, Zhu W, **a Y, Jiang X, Watkins S, Vazquez A, Thomson AW, Chen J, Yu W, Hu X. 2017. C-C chemokine receptor type 5 (CCR5)-mediated docking of transferred Tregs protects against early blood-brain barrier disruption After Stroke. J Am Heart Assoc 6

  24. Lucaciu A, Kuhn H, Trautmann S, Ferreiros N, Steinmetz H, Pfeilschifter J, Brunkhorst R, Pfeilschifter W, Subburayalu J, Vutukuri R. 2020. A sphingosine 1-phosphate gradient is linked to the cerebral recruitment of T helper and regulatory T helper cells during acute ischemic stroke. Int J Mol Sci 21

  25. Lee HT, Liu SP, Lin CH, Lee SW, Hsu CY, Sytwu HK, Hsieh CH, Shyu WC (2017) A crucial role of CXCL14 for promoting regulatory T cells activation in stroke. Theranostics 7:855–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi L, Sun Z, Su W, Xu F, **e D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM, Li S, Stolz DB, Chen K, Ding Y, Thomson AW, Leak RK, Chen J, Hu X (2021) Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 54(1527–42):e8

    Google Scholar 

  27. Guo S, Luo Y (2020) Brain Foxp3(+) regulatory T cells can be expanded by Interleukin-33 in mouse ischemic stroke. Int Immunopharmacol 81:106027

    Article  CAS  PubMed  Google Scholar 

  28. **e D, Miao W, Xu F, Yuan C, Li S, Wang C, Junagade A, Hu X (2022) IL-33/ST2 axis protects against traumatic brain injury through enhancing the function of regulatory T cells. Front Immunol 13:860772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–199

    Article  CAS  PubMed  Google Scholar 

  30. Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, Langhauser F, Helluy X, Schwarz T, Bittner S, Mayer CT, Brede M, Varallyay C, Pham M, Bendszus M, Jakob P, Magnus T, Meuth SG, Iwakura Y, Zernecke A, Sparwasser T, Nieswandt B, Stoll G, Wiendl H (2013) Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121:679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H (2011) CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis 26:87–90

    Article  PubMed  Google Scholar 

  32. Liesz A, Hu X, Kleinschnitz C, Offner H (2015) Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 46:1422–1430

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang J, **e L, Yang C, Ren C, Zhou K, Wang B, Zhang Z, Wang Y, ** K, Yang GY (2015) Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front Cell Neurosci 9:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, Liang W, Thomson AW, Chen J, Hu X (2013) Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 74:458–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li P, Mao L, Liu X, Gan Y, Zheng J, Thomson AW, Gao Y, Chen J, Hu X (2014) Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood-brain barrier damage after stroke. Stroke 45:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu X, Leak RK, Thomson AW, Yu F, **a Y, Wechsler LR, Chen J (2018) Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 14:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569

    Article  CAS  PubMed  Google Scholar 

  38. Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102:419–424

    Article  CAS  PubMed  Google Scholar 

  39. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22:516–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. **e L, Choudhury GR, Winters A, Yang SH, ** K (2015) Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol 45:180–191

    Article  CAS  PubMed  Google Scholar 

  41. Kim M, Kim SD, Kim KI, Jeon EH, Kim MG, Lim YR, Lkhagva-Yondon E, Oh Y, Na K, Chung YC, ** BK, Song YS, Jeon MS (2021) Dynamics of T lymphocyte between the periphery and the brain from the acute to the chronic phase following ischemic stroke in mice. Exp Neurobiol 30:155–169

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sanjabi S, Oh SA, Li MO. 2017. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 9

  43. Dolati S, Ahmadi M, Khalili M, Taheraghdam AA, Siahmansouri H, Babaloo Z, Aghebati-Maleki L, Jadidi-Niaragh F, Younesi V, Yousefi M (2018) Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke. Neurol Sci 39:647–654

    Article  PubMed  Google Scholar 

  44. Wang M, Wang Y, He J, Wei S, Zhang N, Liu F, Liu X, Kang Y, Yao X (2013) Albumin induces neuroprotection against ischemic stroke by altering Toll-like receptor 4 and regulatory T cells in mice. CNS Neurol Disord Drug Targets 12:220–227

    Article  CAS  PubMed  Google Scholar 

  45. Liu K, Huang A, Nie J, Tan J, **ng S, Qu Y, Jiang K (2021) IL-35 regulates the function of immune cells in tumor microenvironment. Front Immunol 12:683332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu C, Zhu H, Shen R, Feng Q, Zhou H, Zhao Z (2018) IL-35 is a protective immunomodulator in brain ischemic injury in mice. Neurochem Res 43:1454–1463

    Article  CAS  PubMed  Google Scholar 

  47. **ao T, Qu H, Zeng Z, Li C, Wan J. 2022. Interleukin-35 from interleukin-4-stimulated macrophages alleviates oxygen glucose deprivation/re-oxygenation-induced neuronal cell death via the Wnt/β-catenin signaling pathway. Neurotox Res

  48. Chen W, ** W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 172:5213–5221

    Article  CAS  PubMed  Google Scholar 

  50. Bodhankar S, Chen Y, Lapato A, Dotson AL, Wang J, Vandenbark AA, Saugstad JA, Offner H (2015) PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke 46:2926–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013) PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation 10:111

    Article  PubMed  PubMed Central  Google Scholar 

  52. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  54. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, Hou TZ, Futter CE, Anderson G, Walker LS, Sansom DM (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma J, Shen L, Bao L, Yuan H, Wang Y, Liu H, Wang Q (2021) A novel prognosis prediction model, including cytotoxic T lymphocyte-associated antigen-4, ischemia-modified albumin, lipoprotein-associated phospholipase A2, glial fibrillary acidic protein, and homocysteine, for ischemic stroke in the Chinese hypertensive population. J Clin Lab Anal 35:e23756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noh MY, Lee WM, Lee SJ, Kim HY, Kim SH, Kim YS (2018) Regulatory T cells increase after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke patients. Int Immunopharmacol 60:104–110

    Article  CAS  PubMed  Google Scholar 

  57. Garín MI, Chu CC, Golshayan D, Cernuda-Morollón E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109:2058–2065

    Article  PubMed  Google Scholar 

  58. Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng YH, Jiang YF, Qin C, Shang K, Yuan Y, Wei XJ, Xu Z, Luo X, Wang W, Qu WS (2022) Galectin-1 contributes to vascular remodeling and blood flow recovery after cerebral ischemia in mice. Transl Stroke Res 13:160–170

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, **a J, Zhang F, Shi Y, Wu Y, Pu H, Liou AK, Leak RK, Yu X, Chen L, Chen J (2015) Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep 5:9621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishibashi S, Kuroiwa T, Sakaguchi M, Sun L, Kadoya T, Okano H, Mizusawa H (2007) Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp Neurol 207:302–313

    Article  CAS  PubMed  Google Scholar 

  62. Qu WS, Wang YH, Wang JP, Tang YX, Zhang Q, Tian DS, Yu ZY, **e MJ, Wang W (2010) Galectin-1 enhances astrocytic BDNF production and improves functional outcome in rats following ischemia. Neurochem Res 35:1716–1724

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G (2016) White matter injury in ischemic stroke. Prog Neurobiol 141:45–60

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, Fleville S, Eleftheriadis G, Zhao C, Naughton M, Hassan R, Moffat J, Falconer J, Boyd A, Hamilton P, Allen IV, Kissenpfennig A, Moynagh PN, Evergren E, Perbal B, Williams AC, Ingram RJ, Chan JR, Franklin RJM, Fitzgerald DC (2017) Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 20:674–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. de la Vega GN, Penalva R, Dittmer M, Naughton M, Falconer J, Moffat J, de la Fuente AG, Hombrebueno JR, Lin Z, Perbal B, Ingram RJ, Evergren E, Fitzgerald DC (2020) Dynamic CCN3 expression in the murine CNS does not confer essential roles in myelination or remyelination. Proc Natl Acad Sci U S A 117:18018–18028

    Article  Google Scholar 

  66. Hsieh J, Aimone JB, Kaspar BK, Kuwabara T, Nakashima K, Gage FH (2004) IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J Cell Biol 164:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Glezer I, Rivest S (2010) Oncostatin M is a novel glucocorticoid-dependent neuroinflammatory factor that enhances oligodendrocyte precursor cell activity in demyelinated sites. Brain Behav Immun 24:695–704

    Article  CAS  PubMed  Google Scholar 

  68. Hu X (2020) Microglia/macrophage polarization: fantasy or evidence of functional diversity? J Cereb Blood Flow Metab 40:S134–S136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lyu J, **e D, Bhatia TN, Leak RK, Hu X, Jiang X (2021) Microglial/macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 27:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL (2007) Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 82:1083–1094

    Article  CAS  PubMed  Google Scholar 

  71. Reynolds AD, Stone DK, Mosley RL, Gendelman HE (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 182:4137–4149

    Article  CAS  PubMed  Google Scholar 

  72. Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, Liao B, Appel SH (2011) Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134:1293–1314

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhao W, Beers DR, Liao B, Henkel JS, Appel SH (2012) Regulatory T lymphocytes from ALS mice suppress microglia and effector T lymphocytes through different cytokine-mediated mechanisms. Neurobiol Dis 48:418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moorman HR, Poschel D, Klement JD, Lu C, Redd PS, Liu K. 2020. Osteopontin: a key regulator of tumor progression and immunomodulation. Cancers (Basel) 12

  75. He X, Lin S, Yang L, Tan P, Ma P, Qiu P, Zheng C, Zhang X, Kang W, Lin W (2021) Programmed death protein 1 is essential for maintaining the anti-inflammatory function of infiltrating regulatory T cells in a murine spinal cord injury model. J Neuroimmunol 354:577546

    Article  CAS  PubMed  Google Scholar 

  76. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    Article  CAS  PubMed  Google Scholar 

  77. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  CAS  PubMed  Google Scholar 

  78. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Stahlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481

    Article  PubMed  Google Scholar 

  80. Wanner IB, Deik A, Torres M, Rosendahl A, Neary JT, Lemmon VP, Bixby JL (2008) A new in vitro model of the glial scar inhibits axon growth. Glia 56:1691–1709

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ohtake Y, Li S (2015) Molecular mechanisms of scar-sourced axon growth inhibitors. Brain Res 1619:22–35

    Article  CAS  PubMed  Google Scholar 

  82. Zador Z, Stiver S, Wang V, Manley GT. 2009. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol: 159–70

  83. Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A 106:1977–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967

    Article  CAS  PubMed  Google Scholar 

  86. Zaiss DM, van Loosdregt J, Gorlani A, Bekker CP, Gröne A, Sibilia M, van Bergen en Henegouwen PM, Roovers RC, Coffer PJ, Sijts AJ. (2013) Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY (2015) A distinct function of regulatory T cells in tissue protection. Cell 162:1078–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mayo L, Cunha AP, Madi A, Beynon V, Yang Z, Alvarez JI, Prat A, Sobel RA, Kobzik L, Lassmann H, Quintana FJ, Weiner HL (2016) IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain 139:1939–1957

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chan A, Yan J, Csurhes P, Greer J, McCombe P (2015) Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: effect on outcome. J Neuroimmunol 286:42–47

    Article  CAS  PubMed  Google Scholar 

  90. Raffin C, Vo LT, Bluestone JA (2020) T(reg) cell-based therapies: challenges and perspectives. Nat Rev Immunol 20:158–172

    Article  CAS  PubMed  Google Scholar 

  91. Yin J, Liao SX, He Y, Wang S, **a GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, Zhou HW. 2015. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 4

  92. Yamashiro K, Tanaka R, Urabe T, Ueno Y, Yamashiro Y, Nomoto K, Takahashi T, Tsuji H, Asahara T, Hattori N (2017) Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE 12:e0171521

    Article  PubMed  PubMed Central  Google Scholar 

  93. Haak BW, Westendorp WF, van Engelen TSR, Brands X, Brouwer MC, Vermeij JD, Hugenholtz F, Verhoeven A, Derks RJ, Giera M, Nederkoorn PJ, de Vos WM, van de Beek D, Wiersinga WJ (2021) Disruptions of anaerobic gut bacteria are associated with stroke and post-stroke infection: a prospective case-control study. Transl Stroke Res 12:581–592

    Article  CAS  PubMed  Google Scholar 

  94. Houlden A, Goldrick M, Brough D, Vizi ES, Lenart N, Martinecz B, Roberts IS, Denes A (2016) Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, Dichgans M, Liesz A (2016) Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 36:7428–7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sadler R, Singh V, Benakis C, Garzetti D, Brea D, Stecher B, Anrather J, Liesz A (2017) Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain Behav Immun 66:23–30

    Article  PubMed  Google Scholar 

  97. Benakis C, Poon C, Lane D, Brea D, Sita G, Moore J, Murphy M, Racchumi G, Iadecola C, Anrather J (2020) Distinct commensal bacterial signature in the gut is associated with acute and long-term protection from ischemic stroke. Stroke 51:1844–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sadighi Akha AA (2018) Aging and the immune system: an overview. J Immunol Methods 463:21–26

    Article  CAS  PubMed  Google Scholar 

  99. Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD (2022) Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 27:803–818

    Article  CAS  PubMed  Google Scholar 

  100. Raynor J, Lages CS, Shehata H, Hildeman DA, Chougnet CA (2012) Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol 24:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hwang KA, Kim HR, Kang I (2009) Aging and human CD4(+) regulatory T cells. Mech Ageing Dev 130:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L (2007) Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 188:117–127

    Article  CAS  PubMed  Google Scholar 

  103. Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, Yung R (2014) Aging is associated with increased regulatory T-cell function. Aging Cell 13:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhao L, Sun L, Wang H, Ma H, Liu G, Zhao Y (2007) Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol 81:1386–1394

    Article  CAS  PubMed  Google Scholar 

  105. Carpentier M, Chappert P, Kuhn C, Lalfer M, Flament H, Burlen-Defranoux O, Lantz O, Bandeira A, Malissen B, Davoust J, Gross DA (2013) Extrathymic induction of Foxp3(+) regulatory T cells declines with age in a T-cell intrinsic manner. Eur J Immunol 43:2598–2604

    Article  CAS  PubMed  Google Scholar 

  106. Chougnet CA, Tripathi P, Lages CS, Raynor J, Sholl A, Fink P, Plas DR, Hildeman DA (2011) A major role for Bim in regulatory T cell homeostasis. J Immunol 186:156–163

    Article  CAS  PubMed  Google Scholar 

  107. Rocamora-Reverte L, Melzer FL, Wurzner R, Weinberger B (2020) The complex role of regulatory T cells in immunity and aging. Front Immunol 11:616949

    Article  CAS  PubMed  Google Scholar 

  108. van der Geest KS, Abdulahad WH, Tete SM, Lorencetti PG, Horst G, Bos NA, Kroesen BJ, Brouwer E, Boots AM (2014) Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol 60:190–196

    Article  PubMed  Google Scholar 

  109. Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S (2006) CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J Immunol 176:6586–6593

    Article  CAS  PubMed  Google Scholar 

  110. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM (2014) Regulatory T cells and the immune aging process: a mini-review. Gerontology 60:130–137

    Article  CAS  PubMed  Google Scholar 

  111. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, Benoist C, Mathis D (2016) Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Afshan G, Afzal N, Qureshi S (2012) CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin Lab 58:567–571

    PubMed  Google Scholar 

  113. Beckmann L, Obst S, Labusek N, Abberger H, Koster C, Klein-Hitpass L, Schumann S, Kleinschnitz C, Hermann DM, Felderhoff-Muser U, Bendix I, Hansen W, Herz J (2022) Regulatory T cells contribute to sexual dimorphism in neonatal hypoxic-ischemic brain injury. Stroke 53:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ahnstedt H, Patrizz A, Chauhan A, Roy-O’Reilly M, Furr JW, Spychala MS, D’Aigle J, Blixt FW, Zhu L, Bravo Alegria J, McCullough LD (2020) Sex differences in T cell immune responses, gut permeability and outcome after ischemic stroke in aged mice. Brain Behav Immun 87:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Reddy J, Waldner H, Zhang X, Illes Z, Wucherpfennig KW, Sobel RA, Kuchroo VK (2005) Cutting edge: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J Immunol 175:5591–5595

    Article  CAS  PubMed  Google Scholar 

  116. Gandhi VD, Cephus JY, Norlander AE, Chowdhury NU, Zhang J, Ceneviva ZJ, Tannous E, Polosukhin VV, Putz ND, Wickersham N, Singh A, Ware LB, Bastarache JA, Shaver CM, Chu HW, Peebles RS, Jr., Newcomb DC. 2022. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J Clin Invest 132

  117. Aristimuno C, Teijeiro R, Valor L, Alonso B, Tejera-Alhambra M, de Andres C, Minarro DO, Lopez-Lazareno N, Faure F, Sanchez-Ramon S (2012) Sex-hormone receptors pattern on regulatory T-cells: clinical implications for multiple sclerosis. Clin Exp Med 12:247–255

    Article  CAS  PubMed  Google Scholar 

  118. Goodman WA, Bedoyan SM, Havran HL, Richardson B, Cameron MJ, Pizarro TT (2020) Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc Natl Acad Sci U S A 117:17166–17176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pernis AB (2007) Estrogen and CD4+ T cells. Curr Opin Rheumatol 19:414–420

    Article  CAS  PubMed  Google Scholar 

  120. Tian W, Jiang SY, Jiang X, Tamosiuniene R, Kim D, Guan T, Arsalane S, Pasupneti S, Voelkel NF, Tang Q, Nicolls MR (2021) The role of regulatory T cells in pulmonary arterial hypertension. Front Immunol 12:684657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gourdy P, Araujo LM, Zhu R, Garmy-Susini B, Diem S, Laurell H, Leite-de-Moraes M, Dy M, Arnal JF, Bayard F, Herbelin A (2005) Relevance of sexual dimorphism to regulatory T cells: estradiol promotes IFN-gamma production by invariant natural killer T cells. Blood 105:2415–2420

    Article  CAS  PubMed  Google Scholar 

  122. Arenas-Ramirez N, Woytschak J, Boyman O (2015) Interleukin-2: biology, design and application. Trends Immunol 36:763–777

    Article  CAS  PubMed  Google Scholar 

  123. Hernandez R, Poder J, LaPorte KM, Malek TR. 2022. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol In press

  124. Raffin C, Vo LT, Bluestone JA (2020) Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol 20:158–172

    Article  CAS  PubMed  Google Scholar 

  125. Ellis GI, Sheppard NC, Riley JL (2021) Genetic engineering of T cells for immunotherapy. Nat Rev Genet 22:427–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scotta C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G (2018) A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials. Mol Ther Methods Clin Dev 8:198–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, Broady R, Levings MK (2016) Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 126:1413–1424

    Article  PubMed  PubMed Central  Google Scholar 

  128. Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MA, Hannen RF, Cooper D, Marelli-Berg FM, Watt FM, Lechler RI, Maher J, Smyth LA, Lombardi G (2017) Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant 17:931–943

    Article  CAS  PubMed  Google Scholar 

  129. Tenspolde M, Zimmermann K, Weber LC, Hapke M, Lieber M, Dywicki J, Frenzel A, Hust M, Galla M, Buitrago-Molina LE, Manns MP, Jaeckel E, Hardtke-Wolenski M (2019) Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun 103:102289

    Article  CAS  PubMed  Google Scholar 

  130. Chmielewski M, Abken H (2015) TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15:1145–1154

    Article  CAS  PubMed  Google Scholar 

  131. Hester J, Schiopu A, Nadig SN, Wood KJ (2012) Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. Am J Transplant 12:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wagner JC, Ronin E, Ho P, Peng Y, Tang Q. 2022. Anti-HLA-A2-CAR Tregs prolong vascularized mouse heterotopic heart allograft survival. Am J Transplant In press

  133. Ratnasothy K, Jacob J, Tung S, Boardman D, Lechler RI, Sanchez-Fueyo A, Martinez-Llordella M, Lombardi G (2019) IL-2 therapy preferentially expands adoptively transferred donor-specific Tregs improving skin allograft survival. Am J Transplant 19:2092–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang H, **a Y, Ye Q, Yu F, Zhu W, Li P, Wei Z, Yang Y, Shi Y, Thomson AW, Chen J, Hu X (2018) In vivo expansion of regulatory T cells with IL-2/IL-2 antibody complex protects against transient ischemic stroke. J Neurosci 38:10168–10179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yshii L, Pasciuto E, Bielefeld P, Mascali L, Lemaitre P, Marino M, Dooley J, Kouser L, Verschoren S, Lagou V, Kemps H, Gervois P, de Boer A, Burton OT, Wahis J, Verhaert J, Tareen SHK, Roca CP, Singh K, Whyte CE, Kerstens A, Callaerts-Vegh Z, Poovathingal S, Prezzemolo T, Wierda K, Dashwood A, **e J, Van Wonterghem E, Creemers E, Aloulou M, Gsell W, Abiega O, Munck S, Vandenbroucke RE, Bronckaers A, Lemmens R, De Strooper B, Van Den Bosch L, Himmelreich U, Fitzsimons CP, Holt MG, Liston A (2022) Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat Immunol 23:878–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peterson LB, Bell CJM, Howlett SK, Pekalski ML, Brady K, Hinton H, Sauter D, Todd JA, Umana P, Ast O, Waldhauer I, Freimoser-Grundschober A, Moessner E, Klein C, Hosse RJ, Wicker LS (2018) A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J Autoimmun 95:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Khoryati L, Pham MN, Sherve M, Kumari S, Cook K, Pearson J, Bogdani M, Campbell DJ, Gavin MA. 2020. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci Immunol 5

  138. Zhang SR, Piepke M, Chu HX, Broughton BR, Shim R, Wong CH, Lee S, Evans MA, Vinh A, Sakkal S, Arumugam TV, Magnus T, Huber S, Gelderblom M, Drummond GR, Sobey CG, Kim HA. 2018. IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke. JCI Insight 3

  139. **ao W, Guo S, Chen L, Luo Y (2019) The role of Interleukin-33 in the modulation of splenic T-cell immune responses after experimental ischemic stroke. J Neuroimmunol 333:576970

    Article  CAS  PubMed  Google Scholar 

  140. Na SY, Mracsko E, Liesz A, Hunig T, Veltkamp R (2015) Amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice. Stroke 46:212–220

    Article  CAS  PubMed  Google Scholar 

  141. Schuhmann MK, Kraft P, Stoll G, Lorenz K, Meuth SG, Wiendl H, Nieswandt B, Sparwasser T, Beyersdorf N, Kerkau T, Kleinschnitz C (2015) CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab 35:6–10

    Article  CAS  PubMed  Google Scholar 

  142. Wang H, Wang Z, Wu Q, Yuan Y, Cao W, Zhang X (2021) Regulatory T cells in ischemic stroke. CNS Neurosci Ther 27:643–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68

    Article  CAS  PubMed  Google Scholar 

  144. Hu Y, Zheng Y, Wu Y, Ni B, Shi S (2014) Imbalance between IL-17A-producing cells and regulatory T cells during ischemic stroke. Mediators Inflamm 2014:813045

    Article  PubMed  PubMed Central  Google Scholar 

  145. Li Q, Wang Y, Yu F, Wang YM, Zhang C, Hu C, Wu Z, Xu X, Hu S (2013) Peripheral Th17/Treg imbalance in patients with atherosclerotic cerebral infarction. Int J Clin Exp Pathol 6:1015–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Borlongan MC, Kingsbury C, Salazar FE, Toledo ARL, Monroy GR, Sadanandan N, Cozene B, Gonzales-Portillo B, Saft M, Wang ZJ, Moscatello A, Lee JY (2021) IL-2/IL-2R antibody complex enhances Treg-induced neuroprotection by dampening TNF-alpha inflammation in an in vitro stroke model. Neuromolecular Med 23:540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu X, Hu R, Pei L, Si P, Wang C, Tian X, Wang X, Liu H, Wang B, **a Z, Xu Y, Song B (2020) Regulatory T cell is critical for interleukin-33-mediated neuroprotection against stroke. Exp Neurol 328:113233

    Article  CAS  PubMed  Google Scholar 

  148. **e L, Sun F, Wang J, Mao X, **e L, Yang SH, Su DM, Simpkins JW, Greenberg DA, ** K (2014) mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol 192:6009–6019

    Article  CAS  PubMed  Google Scholar 

  149. Malone K, Diaz Diaz AC, Shearer JA, Moore AC, Waeber C (2021) The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflammation 18:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang H, Zhang A, Zhang Y, Ma S, Wang C (2016) Resveratrol pretreatment protected against cerebral ischemia/reperfusion injury in rats via expansion of T regulatory cells. J Stroke Cerebrovasc Dis 25:1914–1921

    Article  PubMed  Google Scholar 

Download references

Funding

**aoming Hu is supported by a VA grant (I01 BX003651) and a NIH grant (R01NS094573). AWT is supported by NIH grants AI R01 118777, U01 AI136779, and U19 AI 131453. Rimi Hazra is supported by the pilot grants from the Vascular Medicine Institute, the Hemophilia Center of Western Pennsylvania, Vitalant and Winters Foundation of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoming Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Immunopathology of Stroke – Guest Editors: Arthur Liesz & Tim Magnus

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Thomson, A.W., Yu, F. et al. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol 45, 329–346 (2023). https://doi.org/10.1007/s00281-022-00975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00975-z

Keywords

Navigation