Log in

Autophagy, a novel target for chemotherapeutic intervention of thyroid cancer

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Thyroid cancers with unsatisfactory curative effect nowadays are the most common malignant tumors of the endocrine system. Apoptosis evasion, a hallmark of cancer, has driven the search of stimulating novel cell death way in cancer therapy. This review aims to explore the relationship between autophagy and thyroid cancer, especially the chemotherapy agents which are based on autophagy in treating thyroid cancers.

Methods

A computerized literature search of MEDLINE was performed using the following search terms: autophagy and thyroid cancer.

Results

Recent studies have found that several chemotherapeutic agents and knockdown of specific microRNA may contribute to autophagic tumor cell death in most thyroid cancer types.

Conclusions

Stimulating autophagy may be an effective alternative treatment to most types of thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PTC:

Papillary thyroid cancer

FTC:

Follicular thyroid cancer

ATC:

Anaplastic thyroid cancer

MTC:

Medullary thyroid cancer

mTOR:

Mammalian target of rapamycin

mTORC:

mTOR complex

ULK:

Unc-151-like kinase

UVRAG:

Ultraviolet radiation resistance-associated gene

ATG:

Autophagy gene

PAS:

Pre-autophagosomal structure

DAPK:

Death-associated protein kinase

DRAM:

Damage-regulated autophagy modulator

PI3KCIII:

Class III phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

CA4P:

Combretastatin A4 phosphate

AMPK:

Adenosine 5′-monophosphate-activated protein kinase

ULK:

The mammalian uncoordinated-51-like protein kinase

RAD001:

Everolimus or afinitor

TSC:

Tuberous sclerosis protein

SMTC:

Spontaneous medullary thyroid cancer

HMTC:

Hereditary medullary thyroid cancer

MiRNA:

MicroRNA

RET:

Ret proto-oncogene

TKIs:

Tyrosine kinase inhibitors

LC3:

Microtubule-associated protein 1 light chain 3

References

  1. Miniño AM, Murphy SL, Xu J, Kochanek KD (2011) Deaths: final data for 2008. Natl Vital Stat Rep 59:1–126

    PubMed  Google Scholar 

  2. Sipos JA, Mazzaferri EL (2010) Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol) 22:395–404. doi:10.1016/j.clon.2010.05.004

    Article  CAS  Google Scholar 

  3. Kilfoy BA, Zheng T, Holford TR, Han X (2009) International patterns and trends in thyroid cancer incidence, 1973–2002. Cancer Causes Control 20:525–531. doi:10.1007/s10552-008-9260-4

    Article  PubMed Central  PubMed  Google Scholar 

  4. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j

    Article  CAS  PubMed  Google Scholar 

  6. Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 83:2638–2648

    Article  CAS  PubMed  Google Scholar 

  7. Matuszczyk A, Petersen S, Bockisch A, Gorges R, Sheu SY, Veit P, Mann K (2008) Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res 40:210–213. doi:10.1055/s-2008-1046781

    Article  CAS  PubMed  Google Scholar 

  8. Lin CI, Whang EE, Abramson MA, Jiang X, Price BD, Donner DB, Moore FD Jr, Ruan DT (2009) Autophagy: a new target for advanced papillary thyroid cancer therapy. Surgery 146:1208–1214. doi:10.1016/j.surg.2009.09.019

    Article  PubMed  Google Scholar 

  9. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154:787–803

    Article  CAS  PubMed  Google Scholar 

  10. Gilliland FD, Hunt WC, Morris DM, Key CR (1997) Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the surveillance, epidemiology and end results (SEER) program 1973–1991. Cancer 79:564–573

    Article  CAS  PubMed  Google Scholar 

  11. Leboulleux S, Baudin E, Travagli JP, Schlumberger M (2004) Medullary thyroid carcinoma. Clin Endocrinol 61:299–310

    Article  Google Scholar 

  12. Buytaert E, Callewaert G, Vandenheede JR, Agostinis P (2006) Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy 2:238–240

    CAS  PubMed  Google Scholar 

  13. Yeung S-CJ, She M, Yang H, Pan J, Sun L, Chaplin D (2007) Combination chemotherapy including combretastatin A4 phosphate and paclitaxel is effective against anaplastic thyroid cancer in a nude mouse xenograft model. J Clin Endocrinol Metab 92:2902–2909

    Article  CAS  PubMed  Google Scholar 

  14. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518

    Article  CAS  PubMed  Google Scholar 

  15. Agarwala SS, Case S (2010) Everolimus (RAD001) in the treatment of advanced renal cell carcinoma: a review. Oncologist 15:236–245. doi:10.1634/theoncologist.2009-0141

    Article  CAS  PubMed  Google Scholar 

  16. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, Zbar B, Vande Woude GF (1997) Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 94:11445–11450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ, Delbridge L, Robinson BG, Sidhu SB (2011) MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 17:4772–4781. doi:10.1158/1078-0432.CCR-11-0242

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Fu H, Xu C, Tie Y, **ng R, Zhu J, Qin Y, Sun Z, Zheng X (2010) miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 10:354. doi:10.1186/1471-2407-10-354

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wang G, Mao W, Zheng S (2008) MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett 582:3663–3668. doi:10.1016/j.febslet.2008.09.051

    Article  CAS  PubMed  Google Scholar 

  20. Anastasia L, Pelissero G, Venerando B, Tettamanti G (2010) Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ 17:1230–1237. doi:10.1038/cdd.2010.14

    Article  CAS  PubMed  Google Scholar 

  21. Jemaà M, Galluzzi L, Kepp O, Boilève A, Lissa D, Senovilla L, Harper F, Pierron G, Berardinelli F, Antoccia A, Castedo M, Vitale I, Kroemer G (2012) Preferential killing of p53-deficient cancer cells by reversine. Cell Cycle 11:2149–2158. doi:10.4161/cc.20621

    Article  PubMed  Google Scholar 

  22. Nikiforov YE (2004) Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol 15:319–327

    Article  CAS  PubMed  Google Scholar 

  23. Lee YR, Wu WC, Ji WT, Chen JY, Cheng YP, Chiang MK, Chen HR (2012) Reversine suppresses oral squamous cell carcinoma via cell cycle arrest and concomitantly apoptosis and autophagy. J Biomed Sci 19:9. doi:10.1186/1423-0127-19-9

    Article  CAS  PubMed  Google Scholar 

  24. Hua SC, Chang TC, Chen HR, Lu CH, Liu YW, Chen SH, Yu HI, Chang YP, Lee YR (2012) Reversine, a 2,6-disubstituted purine, as an anti-cancer agent in differentiated and undifferentiated thyroid cancer cells. Pharm Res 29:1990–2005. doi:10.1007/s11095-012-0727-3

    Article  CAS  PubMed  Google Scholar 

  25. D’Alise AM, Amabile G, Iovino M, Di Giorgio FP, Bartiromo M, Sessa F, Villa F, Musacchio A, Cortese R (2008) Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. Mol Cancer Ther 7:1140–1149. doi:10.1158/1535-7163.MCT-07-2051

    Article  PubMed  Google Scholar 

  26. McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S, Mitsiades N, Schlossman RL, Munshi NC, Kung AL, Griffin JD, Richardson PG, Anderson KC, Mitsiades CS (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16:483–489. doi:10.1038/nm.2112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lu C-H, Liu Y-W, Hua S-C, Yu H-I, Chang Y-P, Lee Y-R (2012) Autophagy induction of reversine on human follicular thyroid cancer cells. Biomed Pharmacother 66:642–647. doi:10.1016/j.biopha.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  28. Lin C-I, Whang EE, Lorch JH, Ruan DT (2012) Autophagic activation potentiates the antiproliferative effects of tyrosine kinase inhibitors in medullary thyroid cancer. Surgery 152:1142–1149. doi:10.1016/j.surg.2012.08.016

    Article  PubMed  Google Scholar 

  29. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, Agate L, Vivaldi A, Faviana P, Basolo F, Miccoli P, Berti P, Pacini F, Pinchera A (2008) Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93:682–687

    Article  CAS  PubMed  Google Scholar 

  30. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  CAS  PubMed  Google Scholar 

  31. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–667. doi:10.1016/j.cell.2010.04.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9):823–830. doi:10.1038/ncb0910-823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. White E, Karp C, Strohecker AM, Guo Y, Mathew R (2010) Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 22:212–217. doi:10.1016/j.ceb.2009.12.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. doi:10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124. doi:10.1002/path.2694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6:439–448

    Article  CAS  PubMed  Google Scholar 

  37. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of poly glutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  38. Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S, Kadowaki M (2004) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279:8452–8459

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156–2161

    Article  CAS  PubMed  Google Scholar 

  40. Das G, Shravage BV, Baehrecke EH (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol 4(6). doi:10.1101/cshperspect.a008813

  41. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730. doi:10.1038/nrd3802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rouschop KM, Wouters BG (2009) Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr Mol Med 9:417–424

    Article  CAS  PubMed  Google Scholar 

  43. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666. doi:10.1158/1078-0432.CCR-10-2634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316. doi:10.1158/1078-0432.CCR-07-5023

    Article  PubMed Central  PubMed  Google Scholar 

  45. Chen N, Karantza-Wadsworth V (2009) Role and regulation of autophagy in cancer. Biochim Biophys Acta 1793:1516–1523. doi:10.1016/j.bbamcr.2008.12.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chen S, Rehman SK, Zhang W, Wen A, Yao L, Zhang J (2010) Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta 1806:220–229. doi:10.1016/j.bbcan.2010.07.003

    CAS  PubMed  Google Scholar 

  47. Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245

    Article  CAS  PubMed  Google Scholar 

  48. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134

    Article  CAS  PubMed  Google Scholar 

  49. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  50. Feng W, Huang S, Wu H, Zhang M (2007) Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin 1. J Mol Biol 372:223–235

    Article  CAS  PubMed  Google Scholar 

  51. Lambert LA, Qiao N, Hunt KK, Lambert DH, Mills GB, Meijer L, Keyomarsi K (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res 68:7966–7974. doi:10.1158/0008-5472.CAN-08-1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Muñoz-Gámez JA, Rodríguez-Vargas JM, Quiles-Pérez R, Aguilar-Quesada R, Martín-Oliva D, de Murcia G, Menissier de Murcia J, Almendros A, Ruiz de Almodóvar M, Oliver FJ (2009) PARP-1 is involved in autophagy induced by DNA damage. Autophagy 5:61–74

    Article  PubMed  Google Scholar 

  53. Easton JB, Houghton PJ (2006) mTOR and cancer therapy. Oncogene 25:6436–6446

    Article  CAS  PubMed  Google Scholar 

  54. Johnson BE, Jackman D, Janne PA (2007) Rationale for a phase I trial of erlotinib and the mammalian target of rapamycin inhibitor everolimus (RAD001) for patients with relapsed non small cell lung cancer. Clin Cancer Res 13:s4628–s4631

    Article  PubMed  Google Scholar 

  55. Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K, Mori M (2009) Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol 34:1069–1075

    CAS  PubMed  Google Scholar 

  56. Lin WM, Baker AC, Beroukhim R, Winckler W, Feng W, Marmion JM, Laine E, Greulich H, Tseng H, Gates C, Hodi FS, Dranoff G, Sellers WR, Thomas RK, Meyerson M, Golub TR, Dummer R, Herlyn M, Getz G, Garraway LA (2008) Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res 68:664–673. doi:10.1158/0008-5472.CAN-07-2615

    Article  CAS  PubMed  Google Scholar 

  57. Wang G, Mao W, Zheng S (2008) MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett 582:3663–3668. doi:10.1016/j.febslet.2008.09.051

    Article  CAS  PubMed  Google Scholar 

  58. Nakahara S, Oka N, Raz A (2005) On the role of galectin-3 in cancer apoptosis. Apoptosis 10:267–275

    Article  CAS  PubMed  Google Scholar 

  59. Idikio HA (2011) Galectin-3 and beclin1/Atg6 genes in human cancers: using cDNA tissue panel, qRT-PCR, and logistic regression model to identify cancer cell biomarkers. PLoS ONE 6:e26150. doi:10.1371/journal.pone.0026150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541

    Article  CAS  Google Scholar 

  61. Lin YC, Lin JH, Chou CW, Chang YF, Yeh SH, Chen CC (2008) Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res 68:2375–2383. doi:10.1158/0008-5472.CAN-07-5807

    Article  CAS  PubMed  Google Scholar 

  62. Sassano A, Platanias LC (2008) Statins in tumor suppression. Cancer Lett 260:11–19. doi:10.1016/j.canlet.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  63. Zeybek ND, Gulcelik NE, Kaymaz FF, Sarisozen C, Vural I, Bodur E, Canpinar H, Usman A, Asan E (2011) Rosuvastatin induces apoptosis in cultured human papillary thyroid cancer cells. J Endocrinol 210:105–115. doi:10.1530/JOE-10-0411

    Article  CAS  PubMed  Google Scholar 

  64. Scott RC, Juhász G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534

    Article  CAS  Google Scholar 

  66. Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Shi M, Zhang T, Sun L, Luo Y, Liu DH, **e ST, Song XY, Wang GF, Chen XL, Zhou BC, Zhang YZ (2013) Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis 18:435–451. doi:10.1007/s10495-012-0786-2

    Article  CAS  PubMed  Google Scholar 

  68. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    Article  CAS  PubMed  Google Scholar 

  69. Corcelle EA, Puustinen P, Jaattela M (2009) Apoptosis and autophagy: targeting autophagy signalling in cancer cells—‘trick or treats’? FEBS J 276:6084–6096. doi:10.1111/j.1742-4658.2009.07332.x

    Article  CAS  PubMed  Google Scholar 

  70. Chan EY, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282:25464–25474

    Article  CAS  PubMed  Google Scholar 

  71. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Zou CF, Jia L, ** H, Yao M, Zhao N, Huan J, Lu Z, Bast RC Jr, Feng Y, Yu Y (2011) Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel. BMC Cancer 11:22. doi:10.1186/1471-2407-11-22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Eum KH, Lee M (2011) Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem 348:61–68. doi:10.1007/s11010-010-0638-8

    Article  CAS  PubMed  Google Scholar 

  74. Yang PM, Chen CC (2011) Life or death? Autophagy in anticancer therapies with statins and histone deacetylase inhibitors. Autophagy 7:107–108

    Article  PubMed  Google Scholar 

  75. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  76. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  77. Platini F, Perez-Tomas R, Ambrosio S, Tessitore L (2010) Understanding autophagy in cell death control. Curr Pharm Des 16:101–113

    Article  CAS  PubMed  Google Scholar 

  78. Yue Z, ** S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    Article  CAS  PubMed  Google Scholar 

  79. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800. doi:10.1101/gad.2016211

    Article  CAS  PubMed  Google Scholar 

  80. Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V, Monciatti I, Mannucci S, Biagioli M, Toscano M, Moretti D, Lio R, Massi D (2010) Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 41:503–512. doi:10.1016/j.humpath.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  81. Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730. doi:10.1038/nrd3802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Wang RC, Wei Y, An Z, Zou Z, **ao G, Bhagat G, White M, Reichelt J, Levine B (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–959. doi:10.1126/science.122596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, ** S, White E (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21:1367–1381

    Article  CAS  PubMed  Google Scholar 

  84. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075. doi:10.1016/j.cell.2009.03.048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, Nelson DA, ** S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410. doi:10.1038/nrc3262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Kenific CM, Thorburn A, Debnath J (2010) Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol 22:241–245. doi:10.1016/j.ceb.2009.10.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Horbinski C, Mojesky C, Kyprianou N (2010) Live free or die: tales of homeless (cells) in cancer. Am J Pathol 177:1044–1052. doi:10.2353/ajpath.2010.091270

    Article  CAS  PubMed  Google Scholar 

  89. He C, Levine B (2010) The Beclin 1 interactome. Curr Opin Cell Biol 22:140–149. doi:10.1016/j.ceb.2010.01.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Liu B, Cheng Y, Liu Q, Bao JK, Yang JM (2010) Autophagic pathways as new targets for cancer drug development. Acta Pharmacol Sin 31:1154–1164. doi:10.1038/aps.2010.118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460. doi:10.1016/j.cell.2008.06.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G (2008) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10:676–687. doi:10.1038/ncb1730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Morselli E, Galluzzi L, Kepp O, Vicencio JM, Criollo A, Maiuri MC, Kroemer G (2009) Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta 1793:1524–1532. doi:10.1016/j.bbamcr.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  94. Cosse JP, Rommelaere G, Ninane N, Arnould T, Michiels C (2010) BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway. Biochem Pharmacol 80:1160–1169. doi:10.1016/j.bcp.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  95. Lee SB, Tong SY, Kim JJ, Um SJ, Park JS (2007) Caspase-independent autophagic cytotoxicity in etoposide-treated CaSki cervical carcinoma cells DNA. Cell Biol 26:713–720

    CAS  Google Scholar 

  96. Sun Y, Zhang J, Peng ZL (2009) Beclin1 induces autophagy and its potential contributions to sensitizes SiHa cells to carboplatin therapy. Int J Gynecol Cancer 19:772–776. doi:10.1111/IGC.0b013e31819d7d10

    Article  PubMed  Google Scholar 

  97. Mukubou H, Tsujimura T, Sasaki R, Ku Y (2010) The role of autophagy in the treatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol 37:821–828

    CAS  PubMed  Google Scholar 

  98. Shingu T, Fujiwara K, Bögler O, Akiyama Y, Moritake K, Shinojima N, Tamada Y, Yokoyama T, Kondo S (2009) Stage-specific effect of inhibition of autophagy on chemotherapy-induced cytotoxicity. Autophagy 5:537–539

    Article  CAS  PubMed  Google Scholar 

  99. Feng Z (2010) p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2:a001057. doi:10.1101/cshperspect.a001057

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-bo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Lc., Liu, Gd., Zhang, Xj. et al. Autophagy, a novel target for chemotherapeutic intervention of thyroid cancer. Cancer Chemother Pharmacol 73, 439–449 (2014). https://doi.org/10.1007/s00280-013-2363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2363-y

Keywords

Navigation