Log in

Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

In animal experiments paclitaxel oleate associated with a cholesterol-rich nanoemulsion concentrated in the neoplastic tissues and showed reduced toxicity and increased antitumor activity compared with paclitaxel-Cremophor EL. Here, a clinical study was performed in breast cancer patients to evaluate the tumoral uptake, pharmacokinetics and toxicity of paclitaxel associated to nanoemulsions.

Methods

Twenty-four hours before mastectomy [3H]-paclitaxel oleate associated with [14C]-cholesteryl oleate-nanoemulsion or [3H]-paclitaxel in Cremophor EL were injected into five patients for collection of blood samples and fragments of tumor and normal breast tissue. A pilot clinical study of paclitaxel-nanoemulsion administered at 3-week intervals was performed in four breast cancer patients with refractory advanced disease at 175 and 220 mg/m2 dose levels.

Results

T1/2 of paclitaxel oleate associated to the nanoemulsion was greater than that of paclitaxel (t1/2 = 15.4 ± 4.7 and 3.5 ± 0.80 h). Uptake of the [14C]-cholesteryl ester nanoemulsion and [3H]-paclitaxel oleate by breast malignant tissue was threefold greater than the normal breast tissue and toxicity was minimal at the two dose levels.

Conclusions

Our results suggest that the paclitaxel-nanoemulsion preparation can be advantageous for use in the treatment of breast cancer because the pharmacokinetic parameters are improved, the drug is concentrated in the neoplastic tissue and the toxicity of paclitaxel is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ades A, Carvalho JP, Graziani SR, Amancio RF, Souen JS, Pinotti JÁ, Maranhão RC (2001) Uptake of a cholesterol-rich emulsion by neoplastic ovarian tissues. Gynecol Oncol 82(1):84–87

    Article  PubMed  CAS  Google Scholar 

  2. Crown J, O′Leary M (2000) The taxanes: an update. Lancet 355:1176–1178

    Article  PubMed  CAS  Google Scholar 

  3. Dias ML, Carvalho JP, Rodrigues DG, Graziani SR, Maranhão RC (2007) Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers. Cancer Chemother Pharmacol 59:105–111

    Article  PubMed  CAS  Google Scholar 

  4. Dorr RT (1994) Pharmacology and toxicology of Cremophor EL diluent. Ann Pharmacother 28:S11–S14

    PubMed  CAS  Google Scholar 

  5. Finley RS, Rowinsky EK (1994) Patient care issues: the management of paclitaxel-related toxicities. Ann Pharmacother 28:S27–S30

    PubMed  CAS  Google Scholar 

  6. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  7. Gal D, MacDonald PC, Porter JC, Simpson ER (1981) Cholesterol metabolism in cancer cells in monolayer culture. Low density lipoprotein metabolism. Int J Cancer 28:315–319

    Article  PubMed  CAS  Google Scholar 

  8. Ginsburg GS, Small DM, Atkinson D (1982) Microemulsions of phospholipids and cholesterol esters. Protein-free models of low density lipoprotein. J Biol Chem 57:8216–8277

    Google Scholar 

  9. Goodman LS, Gilman A (2001) The pharmacological basis of therapeutics, 10th edn. McGraw-Hill, USA

    Google Scholar 

  10. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy MJ (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  PubMed  CAS  Google Scholar 

  11. Graziani SR, Igreja FAF, Hegg R, Meneghetti C, Brandizzi LI, Barboza R, Amâncio RF, Pinotti JA, Maranhão RC (2002) Uptake of a cholesterol-rich emulsion by breast cancer. Gynecol Oncol 85:493–497

    Article  PubMed  CAS  Google Scholar 

  12. Ho YK, Smith RG, Brown MS, Goldstein JL (1978) Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells. Blood 52:1099–1114

    PubMed  CAS  Google Scholar 

  13. Hungria VT, Latrilha MC, Rodrigues DG, Bydlowski SP, Chiattone CS, Maranhão RC (2004) Metabolism of a cholesterol-rich microemulsion (LDE) in patients with multiple myeloma and a preliminary clinical study of LDE as a drug vehicle for treatment of the disease. Cancer Chemother Pharmacol 53:51–60

    PubMed  CAS  Google Scholar 

  14. Lo Prete AC, Maria DA, Rodrigues DG, Valduga CJ, Ibanez OC, Maranhão RC (2006) Evaluation in melanoma-bearing mice of an etoposide derivative associated to a cholesterol-rich nano-emulsion. J Pharm Pharmacol 58:801–808

    Article  PubMed  CAS  Google Scholar 

  15. Maranhão RC, Cesar TB, Pedroso MTB, Hirata MH, Mesquita CH (1993) Metabolic behavior in rats of a non protein microemulsion resembling LDL. Lipids 28:691–696

    Article  PubMed  Google Scholar 

  16. Maranhão RC, Garicochea B, Silva EL, Dorlhiac-Llacer P, Cadena SMS, Coelho IJC, Meneghetti JC, Pileggi FJC, Chamone DAF (1994) Plasma kinetics and biodistribution of a lipid emulsion resembling low-density lipoprotein in patients with acute leukemia. Cancer Res 54:4660–4666

    PubMed  Google Scholar 

  17. Maranhão RC, Garicochea B, Silva EL, Llacer PD, Pileggi FJC, Chamone DAF (1992) Increased plasma removal of microemulsions resembling the lipid phase of low-density lipoproteins (LDL) in patients with acute myeloid leukemia: a possible new strategy for the treatment of the disease. Braz J Med Biol Res 25:1003–1007

    PubMed  Google Scholar 

  18. Maranhão RC, Tavares ER, Padoveze AF, Valduga CJ, Oliveira TV, Rodrigues DG (2006) Paclitaxel associated with a lipid nanoemulsion (LDE) promotes atherosclerosis regression in the rabbit. Atheroscler Suppl 7:466

    Article  Google Scholar 

  19. Maranhão RC, Graziani SR, Yamaguchi N, Melo RF, Latrilha MC, Rodrigues DG, Couto RD, Schreiber R, Buzaid AC (2002) Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother Pharmacol 49:487–498

    Article  PubMed  CAS  Google Scholar 

  20. Matthews CME (1957) The theory of tracer experiments with 1331 I-labeled plasma proteins. Phys Med Biol 2:36–44

    Article  PubMed  CAS  Google Scholar 

  21. Mita AC, Olszanski AJ, Walovitch RC, Perez RP, MacKay K, Tuck DP, Simmons C, Hammond S, Mita MM, Beeram M, Stone AJ, Rowinsky EK, Lewis LD (2007) Phase I and pharmacokinetic study of AI-850, a novelmicroparticle hydrophobic drug delivery system for paclitaxel. Clin Cancer Res 13(11):3293–3301

    Article  PubMed  CAS  Google Scholar 

  22. Pinheiro KV, Hungria VT, Ficker ES, Valduga CJ, Mesquita CH, Maranhão RC (2006) Plasma kinetics of a cholesterol-rich microemulsion (LDE) in patients with Hodgkin’s and non-Hodgkin’s lymphoma and a preliminary study on the toxicity of etoposide associated with LDE. Cancer Chemother Pharmacol 57:624–630

    Article  PubMed  CAS  Google Scholar 

  23. Rodrigues DG, Covolan CC, Coradi ST, Barboza R, Maranhão RC (2002) Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J Pharm Pharmacol 54:765–772

    Article  PubMed  CAS  Google Scholar 

  24. Rodrigues DG, Maria DA, Fernandes DC, Valduga CJ, Couto RD, Ibañez OC, Maranhão RC (2005) Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies. Cancer Chemother Pharmacol 55:565–576

    Article  PubMed  CAS  Google Scholar 

  25. Rowinsky EK, Chaudhry V, Cornblath DR, Donehower RC (1993) Neurotoxicity of taxol. J Natl Cancer Inst Monogr 15:107–115

    PubMed  Google Scholar 

  26. Shah VP, Midha KK, Dighe S, McGilveray IJ, Skelly JP, Yacobi A, Layloff T, Viswanathan CT, Cook CE, McDowall RD, Pittman KA, Spector S (1991) Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet 16(4):249–255

    Article  PubMed  CAS  Google Scholar 

  27. Smith RE, Brown AM, Mamounas EP, Anderson SJ, Lembersky BC, Atkins JH, Shibata HR, Baez L, Defusco PA, Davila E, Tip** SJ, Bearden JD, Thirlwell MP (1999) Randomized trial of 3-hour versus 24-hour infusion of high-dose paclitaxel in patients with metastatic or locally advanced breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-26. J Clin Oncol 17:3403–3411

    PubMed  CAS  Google Scholar 

  28. Sowby FS (1984) Radiation protection. In: Limits for intakes of radionuclides by workers. IRCP publication 30. Part I. Pergamon, Oxford

  29. Valduga CJ, Fernandes DC, Lo Prete AC, Azevedo CHM, Rodrigues DG, Maranhão RC (2003) Use of a cholesterol-rich microemulsion that binds to low-density lipoprotein receptors as vehicle for etoposide. J Pharm Pharmacol 55:1615–1622

    Article  PubMed  CAS  Google Scholar 

  30. Vitols S, Gahrton G, Öst A, Peterson C (1984) Elevated low-density lipoprotein receptor activity in leukemic cells with monocytic differentiation. Blood 63:1186–1193

    PubMed  CAS  Google Scholar 

  31. Weiss RB, Donehower RC, Wiernik PH, Ohnuma T, Gralla RJ, Trump DL, Baker JR, Van Echo DA, Von Hoff DD, Leyland-Jones B (1990) Hypersensitivity reactions from taxol. J Clin Oncol 8:1263–1268

    PubMed  CAS  Google Scholar 

  32. Wiernik PH, Schwartz EL, Einzig A, Strauman JJ, Lipton RB, Dutcher JP (1987) Phase I trial of taxol given as a 24-hour infusion every 21 days: responses observed in metastatic melanoma. J Clin Oncol 5:1232–12329

    PubMed  CAS  Google Scholar 

  33. Wilson WH, Berg SL, Bryant G, Wittes RE, Bates S, Fojo A, Steinberg SM, Goldspiel BR, Herdt J, O’Shaughnessy J (1994) Paclitaxel in doxorubicin-refractory or mitoxantrone-refractory breast cancer: a phase I/II trial of 96-hour infusion. J Clin Oncol 12:1621–1629

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors grateful to Ms. Maria das Dores Pereira for the technical assistance. This study was supported by Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP) and The Zerbini Foundation, both in São Paulo, Brazil. Dr. Maranhão is a 1A Research Awardee of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasilia, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul C. Maranhão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires, L.A., Hegg, R., Valduga, C.J. et al. Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study. Cancer Chemother Pharmacol 63, 281–287 (2009). https://doi.org/10.1007/s00280-008-0738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0738-2

Keywords

Navigation