Log in

Extracellular Vesicles Derived from Auricular Chondrocytes Facilitate Cartilage Differentiation of Adipose-Derived Mesenchymal Stem Cells

  • Original Article
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Purpose

Adipose-derived mesenchymal stem cell (ADSC)-based therapies have been utilized for cartilage regeneration because of their multi-lineage differentiation ability. However, commonly used cartilage inducers such as the transforming growth factor beta-3 (TGF-β3) may be prone to cartilage dedifferentiation and hypertrophy. The directional differentiation of elastic cartilage is limited nowadays. Extracellular vesicles (EVs) have been reported to influence the specific differentiation of mesenchymal stem cells (MSCs) by reflecting the composition of the parental cells. However, the role of auricular chondrogenic-derived EVs (AC-EVs) in elastic chondrogenic differentiation of ADSCs has not yet been reported.

Results

AC-EVs isolated from the external ears of swine exhibited a positive effect on cell proliferation and migration. Furthermore, AC-EVs efficiently promoted chondrogenic differentiation of ADSCs in pellet culture, as shown by the elevated levels of COL2A1, ACAN, and SOX-9 expression. Moreover, there was a significantly higher expression of elastin and a lower expression of the fibrotic marker COL1A1 in comparison with that achieved with TGF-β3. The staining results demonstrated that AC-EVs promoted the deposition of cartilage-specific matrix, which is in good concordance with the real-time polymerase chain reaction (RT-PCR) results.

Conclusions

Auricular chondrogenic-derived EVs are a crucial component in elastic chondrogenic differentiation and other biological behaviors of ADSCs, which may be a useful ingredient for cartilage tissue engineering and external ear reconstruction.

No Level Assigned

This journal requires that authors 42 assign a level of evidence to each submission to which 43 Evidence-Based Medicine rankings are applicable. This 44 excludes Review Articles, Book Reviews, and manuscripts 45 that concern Basic Science, Animal Studies, Cadaver 46 Studies, and Experimental Studies. For a full description of 47 these Evidence-Based Medicine ratings, please refer to the 48 Table oôf Contents or the online Instructions to Authors 49 www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Not applicable

Code Availability

Not applicable

References

  1. Kalluri R, Lebleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478):eaau6977

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Thery C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    PubMed  PubMed Central  Google Scholar 

  3. Narayanan K, Kumar S, Padmanabhan P et al (2018) Lineage-specific exosomes could override extracellular matrix mediated human mesenchymal stem cell differentiation. Biomaterials 182:312–322

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    CAS  PubMed  Google Scholar 

  5. Leblanc P, Arellano-Anaya ZE, Bernard E et al (2017) Isolation of exosomes and microvesicles from cell culture systems to study prion transmission. Methods Mol Biol 1545:153–176

    CAS  PubMed  Google Scholar 

  6. Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    PubMed  PubMed Central  Google Scholar 

  7. Campo AA, Victor-Baldin A, Contreras-Mérida SM (2018) Surgical-based classification for microtia. J Craniofac Surg 29(6):1651–1654

    PubMed  Google Scholar 

  8. Nuyen BA, Kandathil CK, Saltychev M et al (2021) The social perception of Microtia and auricular reconstruction. Laryngoscope 131(1):195–200

    PubMed  Google Scholar 

  9. Wu G, Lu L, Ci Z et al (2022) Three-dimensional cartilage regeneration using engineered cartilage gel with a 3D-printed polycaprolactone framework. Front Bioeng Biotechnol 10:871508

    PubMed  PubMed Central  Google Scholar 

  10. Bružauskaitė I, Bironaitė D, Bagdonas E et al (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355–369

    PubMed  Google Scholar 

  11. Sterodimas A, de Faria J, Correa WE et al (2009) Tissue engineering and auricular reconstruction: a review. J Plast Reconstr Aesthet Surg 62(4):447–452

    PubMed  Google Scholar 

  12. Song H, Zhao J, Cheng J et al (2021) Extracellular vesicles in chondrogenesis and cartilage regeneration. J Cell Mol Med 25(11):4883–4892

    PubMed  PubMed Central  Google Scholar 

  13. Woo CH, Kim HK, Jung GY et al (2020) Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles 9(1):1735249

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu H, Dong L, Bu Z et al (2020) miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration. J Extracell Vesicles 9(1):1778883

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma K, Zhu B, Wang Z et al (2020) Articular chondrocyte-derived extracellular vesicles promote cartilage differentiation of human umbilical cord mesenchymal stem cells by activation of autophagy. J Nanobiotechnol 18(1):163

    CAS  Google Scholar 

  16. Chen Y, Xue K, Zhang X et al (2018) Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells. Stem Cell Res Ther 9(1):318

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Z, Wang Y, **ang S et al (2020) Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun 523(2):506–513

    CAS  PubMed  Google Scholar 

  18. **e Y, Liu X, Wang S et al (2019) Proper mechanical stimulation improve the chondrogenic differentiation of mesenchymal stem cells: Improve the viscoelasticity and chondrogenic phenotype. Biomed Pharmacother 115:108935

    CAS  PubMed  Google Scholar 

  19. Schätti O, Grad S, Goldhahn J et al (2011) A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater 22:214–225

    PubMed  Google Scholar 

  20. Kurenkova AD, Romanova IA, Kibirskiy P et al (2022) Strategies to convert cells into hyaline cartilage: magic spells for adult stem cells. Int J Mol Sci 23(19):11169

    CAS  PubMed  PubMed Central  Google Scholar 

  21. K F, E M, Pg R, et al (2021) Characterisation of ovine bone marrow-derived stromal cells (oBMSC) and evaluation of Chondrogenically induced micro-pellets for cartilage tissue repair in vive. Stem Cell Res Ther 12(1):26

    Google Scholar 

  22. Deng Y, Lei G, Lin Z et al (2019) Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/β-catenin pathwa. Biomaterials 192:569–578

    CAS  PubMed  Google Scholar 

  23. Pomerantseva I, Bichara DA, Tseng A et al (2016) Ear-shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A 22(3–4):197–207

    CAS  PubMed  Google Scholar 

  24. Oba T, Okamoto S, Ueno Y et al (2022) In vitro elastic cartilage reconstruction using human auricular perichondrial chondroprogenitor cell-derived micro 3D spheroids. J Tissue Eng 13:204

    Google Scholar 

  25. Yanaga H, Imai K, Koga M et al (2012) Cell-engineered human elastic chondrocytes regenerate natural scaffold in vitro and neocartilage with neoperichondrium in the human body post-transplantation. Tissue Eng Part A 18(19–20):2020–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tseng A, Pomerantseva I, Cronce MJ et al (2014) Extensively expanded auricular chondrocytes form neocartilage in vivo. Cartilage 5(4):241–251

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Malivce E, Kregar N, Barlivc A et al (2009) Comparison of articular and auricular cartilage as a cell source for the autologous chondrocyte implantatio. J Orthopaed Res 27(7):943–948

    Google Scholar 

  28. Cc W, Ch C, Lh C et al (2018) Facilitating in vivo articular cartilage repair by tissue-engineered cartilage grafts produced from auricular chondrocytes. Am J Sports Med 46(3):713–727

    Google Scholar 

  29. Lohan A, Marzahn U, Sayed KE et al (2014) Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anatomy Anatom Anzeig 196(5):317–326

    Google Scholar 

  30. Shin H, Lee MN, Choung JS et al (2016) Focal adhesion assembly induces phenotypic changes and dedifferentiation in chondrocytes. J Cell Physio 231(8):1822–1831

    CAS  Google Scholar 

  31. Xu R, Greening DW, Zhu HJ et al (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126(4):1152–1162

    PubMed  PubMed Central  Google Scholar 

  32. Lai RC, Yeo RWY, Lim SK (2015) Mesenchymal stem cell exosome. Semin Cell Dev Biol 40:82–88

    CAS  PubMed  Google Scholar 

  33. Colao IL, Corteling R, Bracewell D et al (2018) Manufacturing exosomes: a promising therapeutic platfor. Trends Mol Med 24(3):242–256

    CAS  PubMed  Google Scholar 

  34. Mao G, Zhang Z, Hu S et al (2018) Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther 9(1):247

    CAS  PubMed  PubMed Central  Google Scholar 

  35. H S, S H, Z Z, et al (2019) Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. J Cell Biochem 120(1):171–181

    Google Scholar 

  36. Wang R, Xu B, Xu H (2018) TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle 17(24):2756–2765

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mao G, Hu S, Zhang Z et al (2018) Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Mol Med 22(11):5354–5366

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu N, Wang W, Zhao Z et al (2014) Autophagy in human articular chondrocytes is cytoprotective following glucocorticoid stimulation. Mol Med Rep 9(6):2166–2172

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen C, Cai GQ, Peng JP et al (2015) Autophagy protects chondrocytes from glucocorticoids-induced apoptosis via ROS/Akt/FOXO3 signaling. Osteoarthritis Cartil 23(12):2279–2287

    CAS  Google Scholar 

  40. JK, Lunney, Van Goor A, Kristen E, et al (2021) Importance of the pig as a human biomedical model. Science Translat Med 13(621):5758

    Google Scholar 

  41. Riazifar M, Pone EJ, Lötvall J et al (2017) Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 57:125–154

    CAS  PubMed  Google Scholar 

  42. Li J, Chen X, Yi J et al (2016) Identification and characterization of 293T cell-derived exosomes by profiling the protein, mRNA and MicroRNA components. PLoS ONE 11(9):e0163043

    PubMed  PubMed Central  Google Scholar 

  43. Chen TS, Arslan F, Yin Y et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

RG, JF

Corresponding author

Correspondence to **cai Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Consent to Participate

Not applicable

Consent to Publication

Not applicable

Ethical Approval

All the procedures were approved by the Ethics Committee of the Plastic Surgery Hospital 2022[217]

Human and Animal Rights

All the procedures in this study were approved by the Ethics Committee of the Plastic Surgery Hospital. The animal experiments of the project complied with the principles of animal protection, animal welfare, and ethics, and it complied with the relevant regulations of the national laboratory animal welfare ethics. 2022[217].

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Fan, J. Extracellular Vesicles Derived from Auricular Chondrocytes Facilitate Cartilage Differentiation of Adipose-Derived Mesenchymal Stem Cells. Aesth Plast Surg 47, 2823–2832 (2023). https://doi.org/10.1007/s00266-023-03292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-023-03292-4

Keywords

Navigation