Log in

Analysis of principles inspiring design of three-dimensional-printed custom-made prostheses in two referral centres

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Three-dimensional (3D) printing is an emerging technology used in numerous medical fields. Reconstruction of large bone defects after tumor resections or complex revision surgeries is challenging especially in specific sites where modular prostheses are not available. The possibility to realize custom-made 3D-printed prostheses improves their application in surgical field despite the complication rate, gaining a lot of attention for potential benefits.

Objectives

We asked: (1) What are the emerging indications and designs of 3D-printed prostheses for complex bone reconstructions? (2) What complications occur with the use of custom implants considering site?

Study design and methods

We performed a retrospective analysis of every patient in whom a custom-made 3D-printed prosthesis was used to reconstruct a bone defect after resection for a bone tumour or challenging revision surgery from 2009 to 2018 in two referral centres. Forty-one patients (11 males [27%], 30 females [73%]) with a mean age of 41 years (range, 10–78 years) were included. Our general indications for using these implants were complex reconstructions of massive bone defects, in the absence of available modular prostheses. Seven were non-oncologic patients, whereas 24 patients were mainly treated for their malignant bone tumours. Custom-made 3D-printed prostheses were used in pelvis (29), forearm (6), scapula (2), distal tibia (2), calcaneus (1), and femoral diaphysis (1). The reconstruction included complete articular replacement in 24 cases (58%) whereas a combined spinopelvic implant has been used in two cases. Flaps were used in 25 cases (61%). Statistical analyses include Kaplan–Meier curves of survival.

Results

The mean follow-up was 20 months. In the oncologic group, overall survival was 89% at five year follow-up and only three patients died of disease. Only one patient required implant removal due to deep infection. Overall major and minor complication rate was 22% (14 complications in 9/41 patients), mainly wound-related problems. One patient reported a periprosthetic fracture, one had hip dislocation, and four (12% [4/34 cases]) had local recurrence. Mean MSTS functional outcome score at follow-up was 73% (range, 23–100%), with a full weight bearing at an average time of 73 days from surgery of lower limbs.

Conclusions

Custom-made 3D-printed prostheses represent at today a promising reconstructive technique, maintaining however the correct indications for their use in musculoskeletal oncology and challenging revision surgery. Complication rate is acceptable, with infection and wound healing problems relatively common after complex pelvic reconstructions. We will continue to follow our patients over the longer term to ascertain the role of these implants; however, larger studies will need to confirm indications and control for prognostic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abudu A, Grimer RJ, Cannon SR, Carter SR, Sneath RS (1997) Reconstruction of the hemipelvis after the excision of malignant tumours. Complications and functional outcome of prostheses. J Bone Joint Surg (Br) 79:773–779. https://doi.org/10.1302/0301-620x.79b5.6749

    Article  CAS  Google Scholar 

  2. Ahlmann ER, Menendez LR, Kermani C, Gotha H (2006) Survivorship and clinical outcome of modular endoprosthetic reconstruction for neoplastic disease of the lower limb. J Bone Joint Surg (Br) 88:790–795. https://doi.org/10.1302/0301-620X.88B6.17519

    Article  CAS  Google Scholar 

  3. Angelini A, Guerra G, Mavrogenis AF, Pala E, Picci P, Ruggieri P (2012) Clinical outcome of central conventional chondrosarcoma. J Surg Oncol 106(8):929–937. https://doi.org/10.1002/jso.23173

    Article  PubMed  Google Scholar 

  4. Angelini A, Drago G, Trovarelli G, Calabrò T, Ruggieri P (2014) Infection after surgical resection for pelvic bone tumors: an analysis of 270 patients from one institution. Clin Orthop Relat Res 472(1):349–359. https://doi.org/10.1007/s11999-013-3250-x

    Article  PubMed  Google Scholar 

  5. Angelini A, Calabrò T, Pala E, Trovarelli G, Maraldi M, Ruggieri P (2015) Resection and reconstruction of pelvic bone tumors. Orthopedics 38(2):87–93. https://doi.org/10.3928/01477447-20150204-51

    Article  PubMed  Google Scholar 

  6. Angelini A, Trovarelli G, Berizzi A, Pala E, Breda A, Ruggieri P (2019) Three-dimension-printed custom-made prosthetic reconstructions: from revision surgery to oncologic reconstructions. Int Orthop 43(1):123–132. https://doi.org/10.1007/s00264-018-4232-0

    Article  PubMed  Google Scholar 

  7. Ayvaz M, Bekmez S, Mermerkaya MU, Caglar O, Acaroglu E, Tokgozoglu AM (2014) Long-term results of reconstruction with pelvic allografts after wide resection of pelvic sarcomas. Sci World J 27:605019. https://doi.org/10.1155/2014/605019

    Article  Google Scholar 

  8. Berasi CC, Berend KR, Adams JB, Ruh EL, Lombardi AV Jr (2015) Are custom triflange acetabular components effective for reconstruction of catastrophic bone loss? Clin Orthop Relat Res 473(2):528–535. https://doi.org/10.1007/s11999-014-3969-z

    Article  PubMed  Google Scholar 

  9. Bus MP, Boerhout EJ, Bramer JA, Dijkstra PD (2014) Clinical outcome of pedestal cup endoprosthetic reconstruction after resection of a peri-acetabular tumour. Bone Joint J 96-B:1706–1712. https://doi.org/10.1302/0301-620X.96B12.34622

    Article  CAS  PubMed  Google Scholar 

  10. Bus MP, Szafranski A, Sellevold S, Goryn T, Jutte PC, Bramer JA, Fiocco M, Streitbürger A, Kotrych D, van de Sande MA, Dijkstra PD LUMiC ® endoprosthetic reconstruction after periacetabular tumor resection: short-term results. Clin Orthop Relat Res 475(3):686–695. https://doi.org/10.1007/s11999-016-4805-4

  11. Campanacci M, Capanna R (1991) Pelvic resections: the Rizzoli institute experience. Orthop Clin N Am 22:65–86

    CAS  Google Scholar 

  12. Chen X, Xu L, Wang Y, Hao Y, Wang L (2016) Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and reconstruction surgery. Comput Methods Prog Biomed 125:66–78. https://doi.org/10.1016/j.cmpb.2015.10.020

    Article  Google Scholar 

  13. Dai KR, Yan MN, Zhu ZA, Sun YH (2007) Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplast 22:981–986. https://doi.org/10.1016/j.arth.2007.05.002

    Article  Google Scholar 

  14. Delloye C, Banse X, Brichard B, Docquier PL, Cornu O (2007) Pelvic reconstruction with a structural pelvic allograft after resection of a malignant bone tumor. J Bone Joint Surg Am 89:579–587. https://doi.org/10.2106/JBJS.E.00943

    Article  PubMed  Google Scholar 

  15. Fan H, Fu J, Li X, Pei Y, Li X, Pei G, Guo Z (2015) Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature. World J Surg Oncol 13:308. https://doi.org/10.1186/s12957-015-0723-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fang X, Zhang W, Yu Z, Liu H, **ong Y, Zhou Y, Tu C, Song L, Duan H (2018) Total ulna replacement with a 3D-printed custom-made prosthesis after en bloc tumor resection: a case report. Pediatr Blood Cancer 23:e27522. https://doi.org/10.1002/pbc.27522

    Article  Google Scholar 

  17. Fuchs B, O'Connor MI, Kaufman KR, Padgett DJ, Sim FH (2002) Iliofemoral arthrodesis and pseudarthrosis: a long-term functional outcome evaluation. Clin Orthop Relat Res 397:29–35. https://doi.org/10.1097/00003086-200204000-00005

    Article  Google Scholar 

  18. Guo W, Li D, Tang X, Yang Y, Ji T (2007) Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthop Relat Res 461:180–188. https://doi.org/10.1097/BLO.0b013e31806165d5

    Article  PubMed  Google Scholar 

  19. Imanishi J, Choonga PFM (2015) Three-dimensional printed calcaneal prosthesis following total calcanectomy. Int J Surg Case Rep 10:83–87. https://doi.org/10.1016/j.ijscr.2015.02.037

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ji T, Guo W, Yang RL, Tang XD, Wang YF (2013) Modular hemipelvic endoprosthesis reconstruction–experience in 100 patients with mid-term follow-up results. Eur J Surg Oncol 39:53–60. https://doi.org/10.1016/j.ejso.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Qu X, Mao Y, Dai K, Zhu Z (2016) Custom acetabular cages offer stable fixation and improved hip scores for revision THA with severe bone defects. Clin Orthop Relat Res 474(3):731–740. https://doi.org/10.1007/s11999-015-4587-0

    Article  PubMed  Google Scholar 

  22. Liang H, Ji T, Zhang Y, Wang Y, Guo W (2017) Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J 99-B:267–275. https://doi.org/10.1302/0301-620X.99B2.BJJ-2016-0654.R1

    Article  CAS  PubMed  Google Scholar 

  23. Mankin HJ, Gebhardt MC, Jennings LC, Springfield DS, Tomford WW (1996) Long term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res 324:86–97. https://doi.org/10.1097/00003086-199603000-00011

    Article  Google Scholar 

  24. Mavrogenis AF, Angelini A, Drago G, Merlino B, Ruggieri P (2013) Survival analysis of patients with chondrosarcomas of the pelvis. J Surg Oncol 108(1):19–27. https://doi.org/10.1002/jso.23351

    Article  PubMed  Google Scholar 

  25. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K (2017) The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 26(4):513–518. https://doi.org/10.3171/2016.9.SPINE16371

    Article  Google Scholar 

  26. Mulford JS, Babazadeh S, Mackay N (2016) Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg 86(9):648–653. https://doi.org/10.1111/ans.13533

    Article  PubMed  Google Scholar 

  27. Mulhern JL, Protzman NM, White AM, Brigido SA (2016) Salvage of failed total ankle replacement using a custom titanium truss. J Foot Ankle Surg 55:868–873. https://doi.org/10.1053/j.jfas.2015.12.011

    Article  PubMed  Google Scholar 

  28. Ozaki T, Hillmann A, Winkelmann W (1998) Treatment outcome of pelvic sarcomas in young children: orthopaedic and oncologic analysis. J Pediatr Orthop 18:350–355

    CAS  PubMed  Google Scholar 

  29. Pala E, Trovarelli G, Calabrò T, Angelini A, Abati CN, Ruggieri P (2015) Survival of modern knee tumor megaprostheses: failures, functional results, and a comparative statistical analysis. Clin Orthop Relat Res 473(3):891–899. https://doi.org/10.1007/s11999-014-3699-2

    Article  PubMed  Google Scholar 

  30. Pala E, Trovarelli G, Angelini A, Maraldi M, Berizzi A, Ruggieri P (2017) Megaprosthesis of the knee in tumor and revision surgery. Acta Biomed 88(Supplement 2):129–138. https://doi.org/10.23750/abm.v88i2-S.6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park JW, Kang HG, Lim KM, Kim JH, Kim HS (2018) Three-dimensionally printed personalized implant design and reconstructive surgery for a bone tumor of the calcaneus: a case report. JBJS Case Connect 8(2):e25. https://doi.org/10.2106/JBJS.CC.17.00212

    Article  PubMed  Google Scholar 

  32. Schatzker J, Wong MK (1999) Acetabular revision: the role of rings and cages. Clin Orthop Relat Res 369:187–197

    Article  Google Scholar 

  33. Shah FA, Snis A, Matic A, Thomsen P, Palmquist A (2016) 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater 30:357–367. https://doi.org/10.1016/j.actbio.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  34. Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron- beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34:369–385. https://doi.org/10.1002/jor.23075

    Article  CAS  PubMed  Google Scholar 

  35. So E, Mandas VH, Hlad L (2018) Large osseous defect reconstruction using a custom three- dimensional printed titanium truss implant. J Foot Ankle Surg 57:196–204. https://doi.org/10.1053/j.jfas.2017.07.019

    Article  PubMed  Google Scholar 

  36. Sun W, Li J, Li Q, Li G, Cai Z (2011) Clinical effectiveness of hemipelvic reconstruction using computer-aided custom-made prostheses after resection of malignant pelvic tumors. J Arthroplast 26:1508–1513. https://doi.org/10.1016/j.arth.2011.02.018

    Article  Google Scholar 

  37. Taunton MJ, Fehring TK, Edwards P, Bernasek T, Holt GE, Christie MJ (2012) Pelvic discontinuity treated with custom triflange component: a reliable option. Clin Orthop Relat Res 470(2):428–434. https://doi.org/10.1007/s11999-011-2126-1

    Article  PubMed  Google Scholar 

  38. Traub F, Andreou D, Niethard M, Tiedke C, Werner M, Tunn PU (2013) Biological reconstruction following the resection of malignant bone tumors of the pelvis. Sarcoma 745360. https://doi.org/10.1155/2013/745360

  39. Wang B, Hao Y, Pu F, Jiang W, Shao Z (2018) Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Int Orthop 42(3):687–694. https://doi.org/10.1007/s00264-017-3645-5

    Article  PubMed  Google Scholar 

  40. Wei R, Guo W, Ji T, Zhang Y, Liang H (2017) One-step reconstruction with a 3D-printed, custom-made prosthesis after total en blocsacrectomy: a technical note. Eur Spine J 26(7):1902–1909. https://doi.org/10.1007/s00586-016-4871-z

    Article  PubMed  Google Scholar 

  41. Wen X, Gao S, Feng J, Li S, Gao R, Zhang G (2018) Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printingand rapid prototy**. J Cardiothorac Surg 13(1):4. https://doi.org/10.1186/s13019-017-0692-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wind MA Jr, Swank ML, Sorger JI (2013) Short-term results of a custom triflange acetabular component for massive acetabular bone loss in revision THA. Orthopedics. 36(3):e260–e265. https://doi.org/10.3928/01477447-20130222-11

    Article  PubMed  Google Scholar 

  43. Wong KC, Kumta SM, Geel NV, Demol J (2015) One-step reconstruction with a 3D- printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg 20:14–23. https://doi.org/10.3109/10929088.2015.1076039

    Article  CAS  PubMed  Google Scholar 

  44. Wuisman P, Lieshout O, van Dijk M, van Diest P (2001) Reconstruction after total en bloc sacrectomy for osteosarcoma using a custom-made prosthesis: a technical note. Spine 26(4):431–439. https://doi.org/10.1097/00007632-200102150-00021

    Article  CAS  PubMed  Google Scholar 

  45. Wyatt MC (2015) Custom 3D-printed acetabular implants in hip surgery: innovative breakthrough or expensive bespoke upgrade? Hip Int 25(4):375–379. https://doi.org/10.5301/hipint.5000294

    Article  PubMed  Google Scholar 

  46. **u P, Jia Z, Lv J, Yin C, Cheng Y, Zhang K, Song C, Leng H, Zheng Y, Cai H, Liu Z (2016) Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces 8:17964–17975. https://doi.org/10.1021/acsami.6b05893

    Article  CAS  PubMed  Google Scholar 

  47. Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, Yu M, Wu F, Liu Z (2016) Reconstruction of the upper cervical spine using a personalized 3D- printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976) 41:E50–E54. https://doi.org/10.1097/BRS.0000000000001179

    Article  Google Scholar 

  48. Zang J, Guo W, Yang Y, **e L (2014) Reconstruction of the hemipelvis with a modular prosthesis after resection of a primary malignant peri-acetabular tumour involving the sacroiliac joint. Bone Joint J 96-B:399–405. https://doi.org/10.1302/0301-620X.96B3.32387

    Article  CAS  PubMed  Google Scholar 

  49. Zeegen EN, Aponte-Tinao LA, Hornicek FJ, Gebhardt MC, Mankin HJ (2004) Survivorship analysis of 141 modular metallic endoprostheses at early followup. Clin Orthop Relat Res 420:239–250. https://doi.org/10.1097/00003086-200403000-00034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Ruggieri.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Study Design: Case series; Level of evidence 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelini, A., Kotrych, D., Trovarelli, G. et al. Analysis of principles inspiring design of three-dimensional-printed custom-made prostheses in two referral centres. International Orthopaedics (SICOT) 44, 829–837 (2020). https://doi.org/10.1007/s00264-020-04523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04523-y

Keywords

Navigation