Log in

Single-center phase 2 study of PD-1 inhibitor combined with DNA hypomethylation agent + CAG regimen in patients with relapsed/refractory acute myeloid leukemia

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Anti-PD-1 monotherapy had limited clinical efficacy in relapsed/refractory (r/r) AML patients with higher PD-1 and PD-L1 expression. Hence, we investigated the efficacy and safety of PD-1 inhibitor with DNA hypomethylating agent (HMA) + CAG regimen in patients who had failed prior AML therapy. In this phase 2, single-arm study, r/r AML patients received azacitidine or decitabine plus CAG regimen with tislelizumab. Primary endpoints were efficacy (objective response rate [ORR]) and safety. Secondary endpoints included overall survival (OS), event-free survival (EFS) and duration of response (DOR). Statistical analyses were performed using Stata 14.0 and SPSS 20.0 software where P < 0.05 denoted significance. Twenty-seven patients were enrolled patients and completed 1 cycle, and 14 (51.9%) and 4 (14.8%) patients completed 2 and 3 cycles, respectively. ORR was 63% (14: complete remission [CR]/CR with incomplete hematologic recovery [CRi], 3: partial remission (PR), 10: no response [NR]). Median OS (mOS) and EFS were 9.7 and 9.2 months, respectively. With a median follow-up of 8.2 months (1.1–26.9), the mOS was not reached in responders (CR/CRi/PR) while it was 2.4 months (0.0–5.4) in nonresponders (P = 0.002). Grade 2–3 immune-related adverse events (irAEs) were observed in 4 (14.8%) patients and 3 nonresponders died of lung infection after treatment. Tislelizumab + HMA + CAG regimen showed improved outcomes in r/r AML patients with lower pretherapy leukemia burden. irAEs were mild and low-grade and higher pretherapy bone marrow CD4+ CD127+ PD-1+ T cells might serve as a predictor of treatment response.

ClinicalTrials.gov identifier NCT04541277.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Thol F, Ganser A (2020) Treatment of relapsed acute myeloid leukemia. Curr Treat Options Oncol 21:66. https://doi.org/10.1007/s11864-020-00765-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burnett AK (2002) Acute myeloid leukemia: treatment of adults under 60 years. Rev Clin Exp Hematol 6:26–45. https://doi.org/10.1046/j.1468-0734.2002.00058.x. (Discussion 86–27)

    Article  PubMed  Google Scholar 

  3. Breems DA, Van Putten WL, Huijgens PC, Ossenkoppele GJ, Verhoef GE, Verdonck LF et al (2005) Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol 23:1969–1978. https://doi.org/10.1200/jco.2005.06.027

    Article  PubMed  Google Scholar 

  4. Burnett A, Wetzler M, Löwenberg B (2011) Therapeutic advances in acute myeloid leukemia. J Clin Oncol 29:487–494. https://doi.org/10.1200/jco.2010.30.1820

    Article  PubMed  Google Scholar 

  5. Forman SJ, Rowe JM (2013) The myth of the second remission of acute leukemia in the adult. Blood 121(7):1077–1082. https://doi.org/10.1182/blood-2012-08-234492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ganzel C, Sun Z, Cripe LD, Fernandez HF, Douer D, Rowe JM, Paietta EM, Ketterling R, O’Connell MJ, Wiernik PH, Bennett JM, Litzow MR, Luger SM, Lazarus HM, Tallman MS (2018) Very poor long-term survival in past and more recent studies for relapsed AML patients: the ECOG-ACRIN experience. Am J Hematol 93(8):1074–1081. https://doi.org/10.1002/ajh.25162

    Article  PubMed  PubMed Central  Google Scholar 

  7. DeWolf S, Tallman MS (2020) How I treat relapsed or refractory AML. Blood 136:1023–1032. https://doi.org/10.1182/blood.2019001982

    Article  PubMed  PubMed Central  Google Scholar 

  8. DeAngelo DJ, Jonas BA, Liesveld JL, Bixby DL, Advani AS, Marlton P et al (2022) Phase 1/2 study of uproleselan added to chemotherapy in patients with relapsed or refractory acute myeloid leukemia. Blood 139:1135–1146. https://doi.org/10.1182/blood.2021010721

    Article  CAS  PubMed  Google Scholar 

  9. Williams P, Basu S, Garcia-Manero G, Hourigan CS, Oetjen KA, Cortes JE et al (2019) The distribution of T-cell subsets and the expression of immune checkpoint receptors and ligands in patients with newly diagnosed and relapsed acute myeloid leukemia. Cancer 125:1470–1481. https://doi.org/10.1002/cncr.31896

    Article  CAS  PubMed  Google Scholar 

  10. Chen C, Liang C, Wang S, Chio CL, Zhang Y, Zeng C et al (2020) Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol 13:28. https://doi.org/10.1186/s13045-020-00853-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeidan AM, Boss I, Beach CL, Copeland WB, Thompson E, Fox BA et al (2022) A randomized phase 2 trial of azacitidine with or without durvalumab as first-line therapy for older patients with AML. Blood Adv 6:2219–2229. https://doi.org/10.1182/bloodadvances.2021006138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson RAM, Evans TRJ, Fraser AR, Nibbs RJB (2018) Immune checkpoint inhibitors: new strategies to checkmate cancer. Clin Exp Immunol 191:133–148. https://doi.org/10.1111/cei.13081

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M et al (2010) Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 116:2484–2493. https://doi.org/10.1182/blood-2010-03-275446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14:3044–3051. https://doi.org/10.1158/1078-0432.Ccr-07-4079

    Article  CAS  PubMed  Google Scholar 

  15. Pourrajab F, Zare-Khormizi MR, Hekmatimoghaddam S, Hashemi AS (2020) Molecular targeting and rational chemotherapy in acute myeloid leukemia. J Exp Pharmacol 12:107–128. https://doi.org/10.2147/jep.S254334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J et al (2011) Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 71:4821–4833. https://doi.org/10.1158/0008-5472.Can-11-0950

    Article  CAS  PubMed  Google Scholar 

  17. Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M et al (2016) Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget 7:10557–10567. https://doi.org/10.18632/oncotarget.7235

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gómez-Llobell M, Peleteiro Raíndo A, Climent Medina J, Gómez Centurión I, Mosquera Orgueira A (2022) Immune checkpoint inhibitors in acute myeloid leukemia: a meta-analysis. Front Oncol 12:882531. https://doi.org/10.3389/fonc.2022.882531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR et al (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28:1280–1288. https://doi.org/10.1038/leu.2013.355

    Article  CAS  PubMed  Google Scholar 

  20. Giannopoulos K (2019) Targeting immune signaling checkpoints in acute myeloid leukemia. J Clin Med. https://doi.org/10.3390/jcm8020236

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qin T, Youssef EM, Jelinek J, Chen R, Yang AS, Garcia-Manero G, Issa JP (2007) Effect of cytarabine and decitabine in combination in human leukemic cell lines. Clin Cancer Res 13:4225–4232. https://doi.org/10.1158/1078-0432.CCR-06-2762

    Article  CAS  PubMed  Google Scholar 

  22. Hong M, Zhu H, Sun Q, Zhu Y, Miao Y, Yang H, Qiu HR, Li JY, Qian SX (2020) Decitabine in combination with low-dose cytarabine, aclarubicin and G-CSF tends to improve prognosis in elderly patients with high-risk AML. Aging (Albany NY) 12:5792–5811. https://doi.org/10.18632/aging.102973

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Guo X (2019) Combination of decitabine, idarubicin, cytarabine, and G-CSF (DIAG) regimen for the treatment of high-risk myelodysplastic syndrome and acute myeloid leukemia. Ann Hematol 98(9):2223–2225. https://doi.org/10.1007/s00277-019-03674-2

    Article  PubMed  Google Scholar 

  24. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH et al (2003) Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–4649. https://doi.org/10.1200/jco.2003.04.036

    Article  PubMed  Google Scholar 

  25. Simon R, Makuch RW (1984) A non-parametric graphical representation of the relationship between survival and the occurrence of an event: application to responder versus non-responder bias. Stat Med 3(1):35–44. https://doi.org/10.1002/sim.4780030106

    Article  CAS  PubMed  Google Scholar 

  26. Tawfik B, Sliesoraitis S, Lyerly S, Klepin HD, Lawrence J, Isom S et al (2014) Efficacy of the hypomethylating agents as frontline, salvage, or consolidation therapy in adults with acute myeloid leukemia (AML). Ann Hematol 93:47–55. https://doi.org/10.1007/s00277-013-1940-9

    Article  CAS  PubMed  Google Scholar 

  27. Stahl M, DeVeaux M, Montesinos P, Itzykson R, Ritchie EK, Sekeres MA et al (2018) Hypomethylating agents in relapsed and refractory AML: outcomes and their predictors in a large international patient cohort. Blood Adv 2:923–932. https://doi.org/10.1182/bloodadvances.2018016121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE et al (2019) Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label. Phase II Study Cancer Discov 9:370–383. https://doi.org/10.1158/2159-8290.Cd-18-0774

    Article  CAS  PubMed  Google Scholar 

  29. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W et al (2016) Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 375:740–753. https://doi.org/10.1056/NEJMoa1509277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Topp MS, Gökbuget N, Stein AS, Zugmaier G, O’Brien S, Bargou RC et al (2015) Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 16:57–66. https://doi.org/10.1016/s1470-2045(14)71170-2

    Article  CAS  PubMed  Google Scholar 

  31. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ et al (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378:449–459. https://doi.org/10.1056/NEJMoa1709919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Machiraju D, Schäfer S, Hassel JC (2021) Potential reasons for unresponsiveness to anti-PD1 immunotherapy in young patients with advanced melanoma. Life (Basel). https://doi.org/10.3390/life11121318

    Article  PubMed  Google Scholar 

  33. Kugel CH 3rd, Douglass SM, Webster MR, Kaur A, Liu Q, Yin X et al (2018) Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin Cancer Res 24:5347–5356. https://doi.org/10.1158/1078-0432.Ccr-18-1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bastholt L, Schmidt H, Bjerregaard JK, Herrstedt J, Svane IM (2019) Age favoured overall survival in a large population-based Danish patient cohort treated with anti-PD1 immune checkpoint inhibitor for metastatic melanoma. Eur J Cancer 119:122–131. https://doi.org/10.1016/j.ejca.2019.06.022

    Article  CAS  PubMed  Google Scholar 

  35. Hulegårdh E, Nilsson C, Lazarevic V, Garelius H, Antunovic P, Rangert Derolf Å et al (2015) Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: a report from the Swedish Acute Leukemia Registry. Am J Hematol 90:208–214. https://doi.org/10.1002/ajh.23908

    Article  PubMed  Google Scholar 

  36. Borthakur G, Lin E, Jain N, Estey EE, Cortes JE, O’Brien S et al (2009) Survival is poorer in patients with secondary core-binding factor acute myelogenous leukemia compared with de novo core-binding factor leukemia. Cancer 115:3217–3221. https://doi.org/10.1002/cncr.24367

    Article  PubMed  Google Scholar 

  37. Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T (2004) Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia 18:120–125. https://doi.org/10.1038/sj.leu.2403187

    Article  CAS  PubMed  Google Scholar 

  38. Schmaelter AK, Labopin M, Socié G, Itälä-Remes M, Blaise D, Yakoub-Agha I et al (2020) Inferior outcome of allogeneic stem cell transplantation for secondary acute myeloid leukemia in first complete remission as compared to de novo acute myeloid leukemia. Blood Cancer J 10:26. https://doi.org/10.1038/s41408-020-0296-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH et al (2020) Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med 383:617–629. https://doi.org/10.1056/NEJMoa2012971

    Article  CAS  PubMed  Google Scholar 

  40. Boddu P, Kantarjian H, Ravandi F, Garcia-Manero G, Borthakur G, Andreeff M et al (2018) Outcomes with lower intensity therapy in TP53-mutated acute myeloid leukemia. Leuk Lymphoma 59:2238–2241. https://doi.org/10.1080/10428194.2017.1422864

    Article  CAS  PubMed  Google Scholar 

  41. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170:1120-1133.e1117. https://doi.org/10.1016/j.cell.2017.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S et al (2018) A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 24:994–1004. https://doi.org/10.1038/s41591-018-0057-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM et al (2017) Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell 168:487-502.e415. https://doi.org/10.1016/j.cell.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kagamu H, Kitano S, Yamaguchi O, Yoshimura K, Horimoto K, Kitazawa M et al (2020) CD4(+) T-cell immunity in the peripheral blood correlates with response to Anti-PD-1 therapy. Cancer Immunol Res 8:334–344. https://doi.org/10.1158/2326-6066.Cir-19-0574

    Article  CAS  PubMed  Google Scholar 

  45. Zhou X, Yao Z, Yang H, Liang N, Zhang X, Zhang F (2020) Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med 18:87. https://doi.org/10.1186/s12916-020-01549-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ijaz A, Khan AY, Malik SU, Faridi W, Fraz MA, Usman M et al (2019) Significant risk of graft-versus-host disease with exposure to checkpoint inhibitors before and after allogeneic transplantation. Biol Blood Marrow Transplant 25:94–99. https://doi.org/10.1016/j.bbmt.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  47. Merryman RW, Kim HT, Zinzani PL, Carlo-Stella C, Ansell SM, Perales MA et al (2017) Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood 129:1380–1388. https://doi.org/10.1182/blood-2016-09-738385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Merryman RW, Castagna L, Giordano L, Ho VT, Corradini P, Guidetti A et al (2021) Allogeneic transplantation after PD-1 blockade for classic Hodgkin lymphoma. Leukemia 35:2672–2683. https://doi.org/10.1038/s41375-021-01193-6

    Article  CAS  PubMed  Google Scholar 

  49. Herbaux C, Merryman R, Devine S, Armand P, Houot R, Morschhauser F et al (2018) Recommendations for managing PD-1 blockade in the context of allogeneic HCT in Hodgkin lymphoma: taming a necessary evil. Blood 132:9–16. https://doi.org/10.1182/blood-2018-02-811174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China for the partial funding support provided to conduct the study.

Funding

This work was partially supported by grants from the National Natural Science Foundation of China (82070149 to X-N G).

Author information

Authors and Affiliations

Authors

Contributions

XNG was involved in conceptualization, funding acquisition, investigations, data curation, data analysis and manuscript writing. YFS was responsible for patient enrollment, investigation and data curation. MYL contributed to patient follow-up and data analysis. YJ, JW, LX, LLZ, AW, YZW, XZ and YFL participated in patient enrollment and data curation. DHL took part in conceptualization, supervision, resources and project administration.

Corresponding authors

Correspondence to **ao-Ning Gao or Dai-Hong Liu.

Ethics declarations

Conflict of interest

All the authors declare no financial or other conflicts of interest.

Ethics approval

The study protocol was approved by the Ethics Committee of Chinese PLA General Hospital and investigators abided by Good Clinical Practice, as described in the International Council for Harmonization guideline E6 and in accordance with the general ethical principles as outlined in the Declaration of Helsinki.

Consent to participate

Signed informed consent was obtained from all patients or respective guardians prior to treatment.

Consent to publish

All analyses were performed using de-identified data and, as such, no patient personal information is presented in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XN., Su, YF., Li, My. et al. Single-center phase 2 study of PD-1 inhibitor combined with DNA hypomethylation agent + CAG regimen in patients with relapsed/refractory acute myeloid leukemia. Cancer Immunol Immunother 72, 2769–2782 (2023). https://doi.org/10.1007/s00262-023-03454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-023-03454-y

Keywords

Navigation