Log in

Targeting FLT3-specific chimeric antigen receptor T cells for acute lymphoblastic leukemia with KMT2A rearrangement

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD19-specific chimeric antigen receptor T (CAR T) immunotherapy is used to treat B-cell malignancies. However, antigen-escape mediated relapse following CAR T therapy has emerged as a major concern. In some relapsed cases, especially KMT2A rearrangement-positive B-acute lymphoblastic leukemia (KMT2A-r B-ALL), most of the B-cell antigens are lost via lineage conversion to the myeloid phenotype, rendering multi-B-cell-antigen-targeted CAR T cell therapy ineffective. Fms-related tyrosine kinase-3 (FLT3) is highly expressed in KMT2A-r B-ALL; therefore, in this study, we aimed to evaluate the antitumor efficacy of CAR T cells targeting both CD19 and FLT3 in KMT2A-r B-ALL cells. We developed piggyBac transposon-mediated CAR T cells targeting CD19, FLT3, or both (dual) and generated CD19-negative KMT2A-r B-ALL models through CRISPR-induced CD19 gene-knockout (KO). FLT3 CAR T cells showed antitumor efficacy against CD19-KO KMT2A-r B-ALL cells both in vitro and in vivo; dual-targeted CAR T cells showed cytotoxicity against wild-type (WT) and CD19-KO KMT2A-r B-ALL cells, whereas CD19 CAR T cells demonstrated cytotoxicity only against WT KMT2A-r B-ALL cells in vitro. Therefore, targeting FLT3-specific CAR T cells would be a promising strategy for KMT2A-r B-ALL cells even with CD19-negative relapsed cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA, Grupp SA (2018) Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. N Engl J Med 378:439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M, Brentjens RJ, Sadelain M (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378:449–459. https://doi.org/10.1056/NEJMoa1709919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shah NN, Lee DW, Yates B, Yuan CM, Shalabi H, Martin S, Wolters PL, Steinberg SM, Baker EH, Delbrook CP, Stetler-Stevenson M, Fry TJ, Stroncek DF, Mackall CL (2021) Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J Clin Oncol 39:1650–1659. https://doi.org/10.1200/jco.20.02262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D, Lv F, Li W, Wu Y, Wang H, Liu H, Zhou X, He T, Lu P (2020) Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv 4:2325–2338. https://doi.org/10.1182/bloodadvances.2020001466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ghorashian S, Kramer AM, Onuoha S, Wright G, Bartram J, Richardson R, Albon SJ, Casanovas-Company J, Castro F, Popova B, Villanueva K, Yeung J, Vetharoy W, Guvenel A, Wawrzyniecka PA, Mekkaoui L, Cheung GW, Pinner D, Chu J, Lucchini G, Silva J, Ciocarlie O, Lazareva A, Inglott S, Gilmour KC, Ahsan G, Ferrari M, Manzoor S, Champion K, Brooks T, Lopes A, Hackshaw A, Farzaneh F, Chiesa R, Rao K, Bonney D, Samarasinghe S, Goulden N, Vora A, Veys P, Hough R, Wynn R, Pule MA, Amrolia PJ (2019) Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med 25:1408–1414. https://doi.org/10.1038/s41591-019-0549-5

    Article  CAS  PubMed  Google Scholar 

  6. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, Shalabi H, Fountaine TJ, Shern JF, Majzner RG, Stroncek DF, Sabatino M, Feng Y, Dimitrov DS, Zhang L, Nguyen S, Qin H, Dropulic B, Lee DW, Mackall CL (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24:20–28. https://doi.org/10.1038/nm.4441

    Article  CAS  PubMed  Google Scholar 

  7. Cordoba S, Onuoha S, Thomas S, Pignataro DS, Hough R, Ghorashian S, Vora A, Bonney D, Veys P, Rao K, Lucchini G, Chiesa R, Chu J, Clark L, Fung MM, Smith K, Peticone C, Al-Hajj M, Baldan V, Ferrari M, Srivastava S, Jha R, Arce Vargas F, Duffy K, Day W, Virgo P, Wheeler L, Hancock J, Farzaneh F, Domning S, Zhang Y, Khokhar NZ, Peddareddigari VGR, Wynn R, Pule M, Amrolia PJ (2021) CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med 27:1797–1805. https://doi.org/10.1038/s41591-021-01497-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang N, Hu X, Cao W, Li C, **ao Y, Cao Y, Gu C, Zhang S, Chen L, Cheng J, Wang G, Zhou X, Zheng M, Mao X, Jiang L, Wang D, Wang Q, Lou Y, Cai H, Yan D, Zhang Y, Zhang T, Zhou J, Huang L (2020) Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood 135:17–27. https://doi.org/10.1182/blood.2019000017

    Article  PubMed  Google Scholar 

  9. Shah NN, Johnson BD, Schneider D, Zhu F, Szabo A, Keever-Taylor CA, Krueger W, Worden AA, Kadan MJ, Yim S, Cunningham A, Hamadani M, Fenske TS, Dropulić B, Orentas R, Hari P (2020) Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med 26:1569–1575. https://doi.org/10.1038/s41591-020-1081-3

    Article  CAS  PubMed  Google Scholar 

  10. Qin H, Dong Z, Wang X, Cheng WA, Wen F, Xue W, Sun H, Walter M, Wei G, Smith DL, Sun X, Fei F, **e J, Panagopoulou TI, Chen CW, Song JY, Aldoss I, Kayembe C, Sarno L, Müschen M, Inghirami GG, Forman SJ, Kwak LW (2019) CAR T cells targeting BAFF-R can overcome CD19 antigen loss in B cell malignancies. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaw9414

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Dong Z, Awuah D, Chang WC, Cheng WA, Vyas V, Cha SC, Anderson AJ, Zhang T, Wang Z, Szymura SJ, Kuang BZ, Clark MC, Aldoss I, Forman SJ, Kwak LW, Qin H (2022) CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia. Leukemia. https://doi.org/10.1038/s41375-021-01477-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W, Silverman LB, Biondi A, Harms DO, Vilmer E, Schrappe M, Camitta B (2002) Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359:1909–1915. https://doi.org/10.1016/s0140-6736(02)08782-2

    Article  PubMed  Google Scholar 

  13. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, Hovi L, LeBlanc T, Szczepanski T, Ferster A, Janka G, Rubnitz J, Silverman L, Stary J, Campbell M, Li CK, Mann G, Suppiah R, Biondi A, Vora A, Valsecchi MG (2007) A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370:240–250. https://doi.org/10.1016/s0140-6736(07)61126-x

    Article  CAS  PubMed  Google Scholar 

  14. Koh K, Tomizawa D, Moriya Saito A, Watanabe T, Miyamura T, Hirayama M, Takahashi Y, Ogawa A, Kato K, Sugita K, Sato T, Deguchi T, Hayashi Y, Takita J, Takeshita Y, Tsurusawa M, Horibe K, Mizutani S, Ishii E (2015) Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene-rearrangement-positive acute lymphoblastic leukemia. Leukemia 29:290–296. https://doi.org/10.1038/leu.2014.172

    Article  CAS  PubMed  Google Scholar 

  15. Pieters R, De Lorenzo P, Ancliffe P, Aversa LA, Brethon B, Biondi A, Campbell M, Escherich G, Ferster A, Gardner RA, Kotecha RS, Lausen B, Li CK, Locatelli F, Attarbaschi A, Peters C, Rubnitz JE, Silverman LB, Stary J, Szczepanski T, Vora A, Schrappe M, Valsecchi MG (2019) Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. J Clin Oncol 37:2246–2256. https://doi.org/10.1200/jco.19.00261

    Article  CAS  PubMed  Google Scholar 

  16. Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, Smithers H, Jensen MC, Riddell SR, Maloney DG, Turtle CJ (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127:2406–2410. https://doi.org/10.1182/blood-2015-08-665547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rayes A, McMasters RL, O’Brien MM (2016) Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr Blood Cancer 63:1113–1115. https://doi.org/10.1002/pbc.25953

    Article  CAS  PubMed  Google Scholar 

  18. Lamble AJ, Myers RM, Taraseviciute A, John S, Yates B, Steinberg SM, Sheppard J, Kovach AE, Wood BL, Borowitz M, Stetler-Stevenson M, Yuan CM, Pillai V, Foley T, Chung P, Chen L, Lee DW, Annesley C, DiNofia AM, Grupp SA, Verneris MR, Gore L, Laetsch TW, Bhojwani D, Brown PA, Pulsipher MA, Rheingold SR, Gardner RA, Shah NN (2021) KMT2A rearrangements are associated with lineage switch following CD19 targeting CAR T-cell therapy. Blood 138:256–256. https://doi.org/10.1182/blood-2021-153336

    Article  Google Scholar 

  19. Semchenkova A, Mikhailova E, Komkov A, Gaskova M, Abasov R, Matveev E, Kazanov M, Mamedov I, Shmitko A, Belova V, Miroshnichenkova A, Illarionova O, Olshanskaya Y, Tsaur G, Verzhbitskaya T, Ponomareva N, Bronin G, Kondratchik K, Fechina L, Diakonova Y, Vavilova L, Myakova N, Novichkova G, Maschan A, Maschan M, Zerkalenkova E, Popov A (2022) Lineage conversion in pediatric B-cell precursor acute leukemia under blinatumomab therapy. Int J Mol Sci. https://doi.org/10.3390/ijms23074019

    Article  PubMed  PubMed Central  Google Scholar 

  20. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30:41–47. https://doi.org/10.1038/ng765

    Article  CAS  PubMed  Google Scholar 

  21. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ, Look AT (2003) Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 102:262–268. https://doi.org/10.1182/blood-2002-10-3221

    Article  CAS  PubMed  Google Scholar 

  22. Nix MA, Mandal K, Geng H, Paranjape N, Lin YT, Rivera JM, Marcoulis M, White KL, Whitman JD, Bapat SP, Parker KR, Ramirez J, Deucher A, Phojanokong P, Steri V, Fattahi F, Hann BC, Satpathy AT, Manglik A, Stieglitz E, Wiita AP (2021) Surface proteomics reveals CD72 as a target for in vitro-evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL. Cancer Discov 11:2032–2049. https://doi.org/10.1158/2159-8290.Cd-20-0242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Furuichi Y, Goi K, Inukai T, Sato H, Nemoto A, Takahashi K, Akahane K, Hirose K, Honna H, Kuroda I, Zhang X, Kagami K, Hayashi Y, Harigaya K, Nakazawa S, Sugita K (2007) Fms-like tyrosine kinase 3 ligand stimulation induces MLL-rearranged leukemia cells into quiescence resistant to antileukemic agents. Cancer Res 67:9852–9861. https://doi.org/10.1158/0008-5472.Can-07-0105

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura K, Yagyu S, Hirota S, Tomida A, Kondo M, Shigeura T, Hasegawa A, Tanaka M, Nakazawa Y (2021) Autologous antigen-presenting cells efficiently expand piggyBac transposon CAR-T cells with predominant memory phenotype. Mol Ther Methods Clin Dev 21:315–324. https://doi.org/10.1016/j.omtm.2021.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yiwen Li (2009) ANTI-FLT3 ANTIBODIES. https://patents.google.com/patent/US8071099B2/en. Accessed 28 May 2009

  26. Suematsu M, Yagyu S, Nagao N, Kubota S, Shimizu Y, Tanaka M, Nakazawa Y, Imamura T (2022) PiggyBac transposon-mediated CD19 chimeric antigen receptor-T cells derived from CD45RA-positive peripheral blood mononuclear cells possess potent and sustained antileukemic function. Front Immunol. https://doi.org/10.3389/fimmu.2022.770132

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mamonkin M, Rouce RH, Tashiro H, Brenner MK (2015) A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126:983–992. https://doi.org/10.1182/blood-2015-02-629527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bishop DC, Xu N, Tse B, O’Brien TA, Gottlieb DJ, Dolnikov A, Micklethwaite KP (2018) PiggyBac-engineered T cells expressing CD19-specific CARs that Lack IgG1 Fc spacers have potent activity against B-ALL xenografts. Mol Ther 26:1883–1895. https://doi.org/10.1016/j.ymthe.2018.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasegawa A, Saito S, Narimatsu S, Nakano S, Nagai M, Ohnota H, Inada Y, Morokawa H, Nakashima I, Morita D, Ide Y, Matsuda K, Tashiro H, Yagyu S, Tanaka M, Nakazawa Y (2021) Mutated GM-CSF-based CAR-T cells targeting CD116/CD131 complexes exhibit enhanced anti-tumor effects against acute myeloid leukaemia. Clin Transl Immunol 10:e1282. https://doi.org/10.1002/cti2.1282

    Article  CAS  Google Scholar 

  30. Kubo H, Yagyu S, Nakamura K, Yamashima K, Tomida A, Kikuchi K, Iehara T, Nakazawa Y, Hosoi H (2021) Development of non-viral, ligand-dependent, EPHB4-specific chimeric antigen receptor T cells for treatment of rhabdomyosarcoma. Mol Ther Oncol 20:646–658. https://doi.org/10.1016/j.omto.2021.03.001

    Article  CAS  Google Scholar 

  31. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB, van der Voort E, Valsecchi MG, de Lorenzo P, Sallan SE, Armstrong SA, Pieters R (2005) Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 106:2484–2490. https://doi.org/10.1182/blood-2004-09-3667

    Article  CAS  PubMed  Google Scholar 

  32. Stam RW, Schneider P, de Lorenzo P, Valsecchi MG, den Boer ML, Pieters R (2007) Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia. Blood 110:2774–2775. https://doi.org/10.1182/blood-2007-05-091934

    Article  CAS  PubMed  Google Scholar 

  33. Brown PA, Kairalla JA, Hilden JM, Dreyer ZE, Carroll AJ, Heerema NA, Wang C, Devidas M, Gore L, Salzer WL, Winick NJ, Carroll WL, Raetz EA, Borowitz MJ, Small D, Loh ML, Hunger SP (2021) FLT3 inhibitor lestaurtinib plus chemotherapy for newly diagnosed KMT2A-rearranged infant acute lymphoblastic leukemia: children’s oncology Group trial AALL0631. Leukemia 35:1279–1290. https://doi.org/10.1038/s41375-021-01177-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guedan S, Calderon H, Posey AD Jr, Maus MV (2019) Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev 12:145–156. https://doi.org/10.1016/j.omtm.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  35. Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y, Zhang YJ, Baskin DS, Merchant FA, Brawley VS, Byrd TT, Krebs S, Wu MF, Liu H, Heslop HE, Gottschalk S, Yvon E, Ahmed N (2013) Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 21:2087–2101. https://doi.org/10.1038/mt.2013.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, Klichinsky M, Aikawa V, Nazimuddin F, Kozlowski M, Scholler J, Lacey SF, Melenhorst JJ, Morrissette JJ, Christian DA, Hunter CA, Kalos M, Porter DL, June CH, Grupp SA, Gill S (2016) Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 126:3814–3826. https://doi.org/10.1172/jci87366

    Article  PubMed  PubMed Central  Google Scholar 

  37. van der Schans JJ, van de Donk N, Mutis T (2020) Dual targeting to overcome current challenges in multiple myeloma CAR T-Cell treatment. Front Oncol 10:1362. https://doi.org/10.3389/fonc.2020.01362

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hirabayashi K, Du H, Xu Y, Shou P, Zhou X, Fuca G, Landoni E, Sun C, Chen Y, Savoldo B, Dotti G (2021) Dual targeting CAR-T cells with optimal costimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat Cancer 2:904–918. https://doi.org/10.1038/s43018-021-00244-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, Wakefield A, Fousek K, Bielamowicz K, Chow KK, Brawley VS, Byrd TT, Krebs S, Gottschalk S, Wels WS, Baker ML, Dotti G, Mamonkin M, Brenner MK, Orange JS, Ahmed N (2016) Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 126:3036–3052. https://doi.org/10.1172/jci83416

    Article  PubMed  PubMed Central  Google Scholar 

  40. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, Corder A, Schönfeld K, Koch J, Dotti G, Heslop HE, Gottschalk S, Wels WS, Baker ML, Ahmed N (2013) TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105. https://doi.org/10.1038/mtna.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen L, Mao H, Zhang J, Chu J, Devine S, Caligiuri MA, Yu J (2017) Targeting FLT3 by chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Leukemia 31:1830–1834. https://doi.org/10.1038/leu.2017.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y, Xu Y, Li S, Liu J, **ng Y, **ng H, Tian Z, Tang K, Rao Q, Wang M, Wang J (2018) Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T cells. J Hematol Oncol 11:60. https://doi.org/10.1186/s13045-018-0603-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sommer C, Cheng HY, Nguyen D, Dettling D, Yeung YA, Sutton J, Hamze M, Valton J, Smith J, Djuretic I, Chaparro-Riggers J, Sasu BJ (2020) Allogeneic FLT3 CAR T cells with an off-switch exhibit potent activity against AML and can be depleted to expedite bone marrow recovery. Mol Ther 28:2237–2251. https://doi.org/10.1016/j.ymthe.2020.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niswander LM, Graff ZT, Chien CD, Chukinas JA, Meadows CA, Leach LC, Loftus JP, Kohler ME, Tasian SK, Fry TJ (2022) Potent preclinical activity of FLT3-directed chimeric antigen receptor T cell immunotherapy against FLT3-mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia. Haematologica. https://doi.org/10.3324/haematol.2022.281456

    Article  PubMed Central  Google Scholar 

  45. Kikushige Y, Yoshimoto G, Miyamoto T, Iino T, Mori Y, Iwasaki H, Niiro H, Takenaka K, Nagafuji K, Harada M, Ishikawa F, Akashi K (2008) Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol 180:7358–7367. https://doi.org/10.4049/jimmunol.180.11.7358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ms. Kumiko Yamashima and Ms. Mami Kotoura for their valuable technical assistance and Ms. Mika Tanimura, Ms. Ryoko Murata, and Ms. Yasuko Hashimoto for their secretarial assistance. The authors also thank Editage (http://www.editage.com) for proofreading, editing, and reviewing this manuscript. This work was supported by the Japan Agency for Medical Research and Development (AMED) (18ck0106413h0001), JSPS KAKENHI (19K08326) and Kawano Masanori Memorial Public Interest Incorporated Foundation for Promotion of Pediatrics.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SY, YN, SO, TI, and TI; Methodology, MS, SY, HY, and YN; Investigation, MS, SY; Writing—Original Draft, MS, and SY; Writing—Review & Editing, MS, SY, SO, HY, TI, YN, TI, and TI; Funding Acquisition, SY and SO; Resources, SY, TI, and TI; Supervision, SY, TI, and TI.

Corresponding author

Correspondence to Shigeki Yagyu.

Ethics declarations

Conflict of interest

The authors have no financial relationship to declare related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suematsu, M., Yagyu, S., Yoshida, H. et al. Targeting FLT3-specific chimeric antigen receptor T cells for acute lymphoblastic leukemia with KMT2A rearrangement. Cancer Immunol Immunother 72, 957–968 (2023). https://doi.org/10.1007/s00262-022-03303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03303-4

Keywords

Navigation