Log in

TGF-β insensitive dendritic cells: an efficient vaccine for murine prostate cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are highly potent initiators of the immune response, but DC effector functions are often inhibited by immunosuppressants such as transforming growth factor beta (TGF-β). The present study was conducted to develop a treatment strategy for prostate cancer using a TGF-β-insensitive DC vaccine. Tumor lysate-pulsed DCs were rendered TGF-β insensitive by dominant-negative TGF-β type II receptor (TβRIIDN), leading to the blockade of TGF-β signals to members of the Smad family, which are the principal cytoplasmic intermediates involved in the transduction of signals from TGF-β receptors to the nucleus. Expression of TβRIIDN did not affect the phenotype of transduced DCs. Phosphorylated Smad-2 was undetectable and expression of surface co-stimulatory molecules (CD80/CD86) were upregulated in TβRIIDN DCs after antigen and TGF-β1 stimulation. Vaccination of C57BL/6 tumor-bearing mice with the TβRIIDN DC vaccine induced potent tumor-specific cytotoxic T lymphocyte responses against TRAMP-C2 tumors, increased serum IFN-γ and IL-12 level, inhibited tumor growth and increased mouse survival. Furthermore, complete tumor regression occurred in two vaccinated mice. These results demonstrate that blocking TGF-β signals in DC enhances the efficacy of DC-based vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  2. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306

    Article  PubMed  CAS  Google Scholar 

  3. Lee WC, Wang HC, Hung CF, Huang PF, Lia CR, Chen MF (2005) Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J Immunother 28:496–504

    Article  PubMed  Google Scholar 

  4. Chang GC, Lan HC, Juang SH, Wu YC, Lee HC, Hung YM, Yang HY, Whang-Peng J, Liu KJ (2005) A pilot clinical trial of vaccination with dendritic cells pulsed with autologous tumor cells derived from malignant pleural effusion in patients with late-stage lung carcinoma. Cancer 103:763–771

    Article  PubMed  Google Scholar 

  5. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH (2006) Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 6:332–336

    Google Scholar 

  6. Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K, Luo J, Zhu L, Lin Y, Huang M, Dohadwala M, Batra RK, Dubinett SM (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    PubMed  CAS  Google Scholar 

  7. Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EM Jr (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369

    PubMed  CAS  Google Scholar 

  8. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  PubMed  CAS  Google Scholar 

  9. Aalamian M, Pirtskhalaishvili G, Nunez A, Esche C, Shurin GV, Huland E, Huland H, Shurin MR (2001) Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells. Prostate 46:68–75

    Article  PubMed  CAS  Google Scholar 

  10. Ito M, Minamiya Y, Kawai H, Saito S, Saito H, Nakagawa T, Imai K, Hirokawa M, Ogawa J (2006) Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 176:5637–5643

    PubMed  CAS  Google Scholar 

  11. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    Article  PubMed  CAS  Google Scholar 

  12. Kao JY, Gong Y, Chen CM, Zheng QD, Chen JJ (2003) Tumor-derived TGF-beta reduces the efficacy of dendritic cell/tumor fusion vaccine. J Immunol 170:3806–3811

    PubMed  CAS  Google Scholar 

  13. Shah AH, Tabayoyong WB, Kimm SY, Kim SJ, Van Parijs L, Lee C (2002) Reconstitution of lethally irradiated adult mice with dominant negative TGF-beta type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease. J Immunol 169:3485–3491

    PubMed  CAS  Google Scholar 

  14. Shah AH, Tabayoyong WB, Kundu SD, Kim SJ, Van Parijs L, Liu VC, Kwon E, Greenberg NM, Lee C (2002) Suppression of tumor metastasis by blockade of transforming growth factor beta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res 62:7135–7138

    PubMed  CAS  Google Scholar 

  15. Wikstrom P, Damber J, Bergh A (2001) Role of transforming growth factor-beta1 in prostate cancer. Microsc Res Tech 52:411–419

    Article  PubMed  CAS  Google Scholar 

  16. Yang EY, Moses HL (1990) Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111:731–741

    Article  PubMed  CAS  Google Scholar 

  17. Enk AH, Jonuleit H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316

    Article  PubMed  CAS  Google Scholar 

  18. Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A (1998) Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37:19–29

    Article  PubMed  CAS  Google Scholar 

  19. Shariat SF, Shalev M, Menesses-Diaz A, Kim IY, Kattan MW, Wheeler TM, Slawin KM (2001) Preoperative plasma levels of transforming growth factor beta (1) [TGF-beta (1)] strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol 19:2856–2864

    PubMed  CAS  Google Scholar 

  20. Perry KT, Anthony CT, Case T, Steiner MS (1997) Transforming growth factor beta as a clinical biomarker for prostate cancer. Urology 49:151–155

    Article  PubMed  CAS  Google Scholar 

  21. Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC (1999) Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 161:182–187

    Article  PubMed  CAS  Google Scholar 

  22. Steiner MS, Zhou ZZ, Tonb DC, Barrack ER (1994) Expression of transforming growth factor-beta 1 in prostate cancer. Endocrinology 135:2240–2247

    Article  PubMed  CAS  Google Scholar 

  23. Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ, Ramanathapuram LV, Arteaga CL, Akporiaye ET (2003) Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63:1860–1864

    PubMed  CAS  Google Scholar 

  24. Porgador A, Snyder D, Gilboa E (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156:2918–2926

    PubMed  CAS  Google Scholar 

  25. Liu F (2003) Receptor-regulated Smads in TGF-beta signaling. Front Biosci 8:s1280–s1303

    Article  PubMed  CAS  Google Scholar 

  26. Moustakas A, Pardali K, Gaal A, Heldin CH (2002) Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 82:85–91

    Article  PubMed  CAS  Google Scholar 

  27. Chen RH, Ebner R, Derynck R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 260:1335–1338

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Q, Yang X, Pins M, Javonovic B, Kuzel T, Kim SJ, Parijs LV, Greenberg NM, Liu V, Guo Y, Lee C (2005) Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res 65:1761–1769

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Q, Jang TL, Yang X, Park I, Meyer RE, Kundu S, Pins M, Javonovic B, Kuzel T, Kim SJ, Van Parijs L, Smith N, Wong L, Greenberg NM, Guo Y, Lee C (2006) Infiltration of tumor-reactive transforming growth factor-beta insensitive CD8+ T cells into the tumor parenchyma is associated with apoptosis and rejection of tumor cells. Prostate 66:235–247

    Article  PubMed  CAS  Google Scholar 

  30. Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM 1997 Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 57:3325–3330

    PubMed  CAS  Google Scholar 

  31. Kao JY, Zhang M, Chen CM, Chen JJ (2005) Superior efficacy of dendritic cell-tumor fusion vaccine compared with tumor lysate-pulsed dendritic cell vaccine in colon cancer. Immunol Lett 101:154–159

    Article  PubMed  CAS  Google Scholar 

  32. Woo SC, Kim GY, Lee CM, Moon DO, Kim HK, Lee TH, Moon YS, Park NC, Yoon MS, Lee KS, Park YM (2005) The maturation of murine bone marrow-derived dendritic cells by tumor lysate uptake in vitro is not essential for cancer immunotherapy. Cancer Biol Ther 4:1331–1335

    Article  PubMed  CAS  Google Scholar 

  33. Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, **ang J (2001) Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer 93:539–548

    Article  PubMed  CAS  Google Scholar 

  34. Rutella S, Lemoli RM (2004) Regulatory T cells and tolerogenic dendritic cells: from basic biology to clinical applications. Immunol Lett 94:11–26

    Article  PubMed  CAS  Google Scholar 

  35. Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, Juji T, Takahashi TA (2000) TGF-beta 1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol 164:2285–2295

    PubMed  CAS  Google Scholar 

  36. Takayama T, Morelli AE, Onai N, Hirao M, Matsushima K, Tahara H, Thomson AW (2001) Mammalian and viral IL-10 enhance C–C chemokine receptor 5 but down-regulate C–C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J Immunol 166:7136–7143

    PubMed  CAS  Google Scholar 

  37. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C, Jorgas T, Kurz SM, Rose-John S, Yokota Y, Zenke M (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4:380–386

    Article  PubMed  CAS  Google Scholar 

  38. Strobl H, Knapp W (1999) TGF-beta1 regulation of dendritic cells. Microbes Infect 1:1283–1290

    Article  PubMed  CAS  Google Scholar 

  39. Wieser R, Attisano L, Wrana JL, Massague J (1993) Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region. Mol Cell Biol 13:7239–7247

    PubMed  CAS  Google Scholar 

  40. Slavin AJ, Tarner IH, Nakajima A, Urbanek-Ruiz I, McBride J, Contag CH, Fathman CG (2002) Adoptive cellular gene therapy of autoimmune disease. Autoimmun Rev 1:213–219

    Article  PubMed  CAS  Google Scholar 

  41. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by grants from the Nature Science Foundation of China (Project No. 30471738 and 30300413) and the Technology Plan Emphasis Item of Peking (Project No. D0206011000091). We are grateful to the NIH Fellows Editorial Board for their editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Wang.

Additional information

Fu-Li Wang, Wei-Jun Qin contributed equally to this report.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FL., Qin, WJ., Wen, WH. et al. TGF-β insensitive dendritic cells: an efficient vaccine for murine prostate cancer. Cancer Immunol Immunother 56, 1785–1793 (2007). https://doi.org/10.1007/s00262-007-0322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0322-3

Keywords

Navigation