Log in

Intravoxel incoherent motion diffusion-weighted imaging for evaluating the pancreatic perfusion in cirrhotic patients

  • Pancreas
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the characteristics of pancreatic perfusion in normal pancreas versus cirrhotic patients using intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI).

Methods

A total of 67 cirrhotic patients and 33 healthy subjects underwent IVIM on a 3.0 T MRI scanner. Diffusion coefficient (ADCslow), pseudo-diffusion coefficient (ADCfast), and perfusion fraction (f) were calculated based on the bi-exponential model. The pancreatic IVIM-derived parameters were then compared. In the cirrhotic group, the relationship was analyzed between IVIM-derived pancreatic parameters and different classes of hepatic function as determined by the Child-Pugh classification. Also, the pancreatic IVIM-derived parameters were compared among different classes of cirrhosis as determined by the Child-Pugh classification.

Results

The f value of the pancreas in cirrhotic patients was significantly lower than that in normal subjects (p = 0.01). In the cirrhotic group, the f value of the pancreas decreased with the increase of the Child-Pugh classification (R = − 0.49, p = 0.00). The f value of the pancreas was significantly higher in Child-Pugh class A patients than in class B and C patients (p = 0.02, 0.00, respectively), whereas there was no significant difference between class B and C patients (p = 0.16).

Conclusion

The IVIM-derived perfusion-related parameter (f value) could be helpful for the evaluation of pancreatic perfusion in liver cirrhosis. Our data also suggest that the blood perfusion decrease in the pancreas is present in liver cirrhosis, and the pancreatic perfusion tends to decrease with the increasing severity of hepatic function.

Trial registration

Trial registration number is 2021-ky-68 and date of registration for prospectively registered trials is February 23, 2022.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CE-US:

Dynamic contrast-enhanced ultrasound

CT:

Computed tomography

DWI:

Diffusion-weighted imaging

MRI:

Magnetic resonance imaging

ADC:

Apparent diffusion coefficient

IVIM:

Intravoxel incoherent motion

f :

Perfusion fraction

ADCfast :

Pseudo-diffusion coefficient

ADCslow :

Diffusion coefficient

TR:

Repetition time

TE:

Echo time

FOV:

Field of view

NEX:

Number of excitation

References

  1. Premkumar M, Anand AC (2022) Overview of Complications in Cirrhosis. J Clin Exp Hepatol 12:1150-1174. https://doi.org/10.1016/j.jceh.2022.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vorobioff JD, Groszmann RJ (2015) Prevention of portal hypertension: from variceal development to clinical decompensation. Hepatology 61:375-381. https://doi.org/10.1002/hep.27249

    Article  PubMed  Google Scholar 

  3. Møller S, Bendtsen F (2018) The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int 38:570-580. https://doi.org/10.1111/liv.13589

    Article  PubMed  Google Scholar 

  4. McAvoy NC, Semple S, Richards JM et al (2016) Differential visceral blood flow in the hyperdynamic circulation of patients with liver cirrhosis. Aliment Pharmacol Ther 43:947-954. https://doi.org/10.1111/apt.13571

    Article  CAS  PubMed  Google Scholar 

  5. Kuroda T, Hirooka M, Koizumi M et al (2015) Pancreatic congestion in liver cirrhosis correlates with impaired insulin secretion. J Gastroenterol 50:683–93. https://doi.org/10.1007/s00535-014-1001-8

    Article  CAS  PubMed  Google Scholar 

  6. Motosugi U, Ichikawa T, Sou H, Morisaka H, Sano K, Araki T (2012) Multi-organ perfusion CT in the abdomen using a 320 detector row CT scanner: preliminary results of perfusion changes in the liver, spleen, and pancreas of cirrhotic patients. Eur J Radiol 81: 2533-2537. https://doi.org/10.1016/j.ejrad.2011.11.054

    Article  PubMed  Google Scholar 

  7. Sano F, Uemura H (2015) The utility and limitations of contrast-enhanced ultrasound for the diagnosis and treatment of prostate cancer. Sensors (Basel) 15: 4947–4957. https://doi.org/10.3390/s150304947

    Article  PubMed  Google Scholar 

  8. Schmidt J, Hotz HG, Foitzik T et al (1995) Intravenous contrast medium aggravates the impairment of pancreatic microcirculation in necrotizing pancreatitis in the rat. Ann Surg 221:257–264. https://doi.org/10.1097/00000658-199503000-00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Padhani AR, Liu G, Koh DM et al (2009) Diffusion weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia 11:102–125. https://doi.org/10.1016/j.ejrad.2011.11.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 46:285–291. https://doi.org/10.1097/RLI.0b013e3181ffc485

    Article  PubMed  Google Scholar 

  11. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505. https://doi.org/10.1148/radiology.168.2.3393671

    Article  PubMed  Google Scholar 

  12. Tang L, Zhou XJ (2019) Diffusion MRI of cancer: from low to high b-values. J Magn Reson Imaging 49:23–40. https://doi.org/10.1002/jmri.26293

    Article  PubMed  Google Scholar 

  13. Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27:171–178. https://doi.org/10.1002/mrm.1910270116

    Article  PubMed  Google Scholar 

  14. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361. https://doi.org/10.2214/AJR.10.5515

    Article  PubMed  Google Scholar 

  15. Yu SM, Ki SH, Baek HM, (2015) Nonalcoholic Fatty liver Disease: Intravoxel Incoherent Motion Diffusion-weighted MR Imaging—An Experimental Study in a Rabbit Model. PloS one 10: e0139874

    Article  PubMed  PubMed Central  Google Scholar 

  16. Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Rdiology 249:748–752.

    Google Scholar 

  17. Kim B, Lee SS, Sung YS, et al (2017) Intravoxel incoherent motion diffusion-weighted imaging of the pancreas: characterization of benign and malignant pancreatic pathologies. J Magn Reson Imaging 45:260–269. https://doi.org/10.1002/jmri.25334

    Article  PubMed  Google Scholar 

  18. Zhu M, Zhang C, Yan J et al (2021) Accuracy of quantitative diffusion-weighted imaging for differentiating benign and malignant pancreatic lesions: a systematic review and meta-analysis. Eur Radiol 31:7746-7759. https://doi.org/10.1007/s00330-021-07880-3

    Article  PubMed  Google Scholar 

  19. Shi YJ, Li XT, Zhang XY et al (2021) Non-gaussian models of 3-Tesla diffusion-weighted MRI for the differentiation of pancreatic ductal adenocarcinomas from neuroendocrine tumors and solid pseudopapillary neoplasms. Magn Reson Imaging 24:68-76. https://doi.org/10.1016/j.mri.2021.07.006

    Article  CAS  Google Scholar 

  20. Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 44: 769–775. https://doi.org/10.1097/RLI.0b013e3181b62271

    Article  PubMed  Google Scholar 

  21. Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI (2014) Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology, 270:444-453. https://doi.org/10.1148/radiol.13122712

    Article  PubMed  Google Scholar 

  22. Klauss M, Lemke A, Grünberg K, Simon D, Re TJ, Wente MN (2011) Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol 46:57-63. https://doi.org/10.1097/RLI.0b013e3181fb3bf2

    Article  PubMed  Google Scholar 

  23. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60:646-649. https://doi.org/10.1002/bjs.1800600817

    Article  CAS  PubMed  Google Scholar 

  24. Jang DK, Ahn DW, Lee KL et al (2021) Impacts of body composition parameters and liver cirrhosis on the severity of alcoholic acute pancreatitis. PLoS One 16: e0260309. https://doi.org/10.1371/journal.pone.0260309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Simons-Linares CR, Abushamma S, Romero-Marrero C et al (2021) Clinical Outcomes of Acute Pancreatitis in Patients with Cirrhosis According to Liver Disease Severity Scores. Dig Dis Sci 66:2795-2804. https://doi.org/10.1007/s10620-020-06575-x

    Article  PubMed  Google Scholar 

  26. Vogel M, Ehlken H, Kluge S et al (2022) High risk of complications and acute-on-chronic liver failure in cirrhosis patients with acute pancreatitis. Eur J Intern Med 102:54-62. https://doi.org/10.1016/j.ejim.2022.05.034

    Article  CAS  PubMed  Google Scholar 

  27. Steib CJ, Gerbes AL, Bystron M et al (2007) Kupffer cell activation in normal and fibrotic livers increases portal pressure via thromboxane A(2). J Hepatol 47:228-238. https://doi.org/10.1016/j.jhep.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  28. Imamura Y, Kumagi T, Kuroda T et al (2021) Pancreas stiffness in liver cirrhosis is an indicator of insulin secretion caused by portal hypertension and pancreatic congestion. Hepatol Res 51:1-11. https://doi.org/10.1111/hepr.13672

    Article  CAS  Google Scholar 

  29. Grancini V, Trombetta M, Lunati ME et al (2015) Contribution of β-cell dysfunction and insulin resistance to cirrhosis-associated diabetes: role of severity of liver disease. J Hepatol 63:1484-90. https://doi.org/10.1016/j.jhep.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  30. Li J, Li W, Niu J et al (2020) Intravoxel Incoherent Motion Diffusion-weighted MRI of Infiltrated Marrow for Predicting Overall Survival in Newly Diagnosed Acute Myeloid Leukemia. Radiology 295:155-161

    Article  PubMed  Google Scholar 

  31. Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology, 249:891-899. https://doi.org/10.1148/radiol.2493080080

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the technicians who performed IVIM-MRI scans on all subjects in the department of radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82172092), Key Project of Application Development Plan of Chongqing (Grant No. cstc2019jscx-dxwt BX0004) and the Chengdu University of Traditional Chinese Medicine “**nglin Scholars” Discipline Talents Research Promotion Plan (Grant No. YYZX2021059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Gang Wang or Hua Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Zeng, GF., Fang, Y. et al. Intravoxel incoherent motion diffusion-weighted imaging for evaluating the pancreatic perfusion in cirrhotic patients. Abdom Radiol 49, 492–500 (2024). https://doi.org/10.1007/s00261-023-04063-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-04063-0

Keywords

Navigation