Log in

Changes in image-defined risk factors with neoadjuvant chemotherapy in pediatric abdominal neuroblastoma

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To observe the changes in image-defined risk factors (IDRFs) with neoadjuvant chemotherapy in pediatric abdominal neuroblastoma and to investigate the correlations between IDRF changes and histopathological features. In addition, this study also investigated the correlations between residual IDRFs after neoadjuvant chemotherapy and intraoperative complications.

Methods

Forty-three patients with abdominal neuroblastoma who received neoadjuvant chemotherapy in our hospital from January 2015 to September 2021 were enrolled. Intraoperative records, histopathological features, and CT images at initial diagnosis and after neoadjuvant chemotherapy of all patients were retrospectively collected and analyzed.

Results

A total of 245 IDRFs were found at initial diagnosis, with a median of 6 [5, 7] IDRFs per patient. After neoadjuvant chemotherapy, IDRFs significantly decreased to 156 (p < 0.001), with a median of 4 [3, 5] IDRFs remaining per patient. The majority of IDRFs (6/8, 75.00%) were significantly improved after neoadjuvant chemotherapy (p < 0.05), while tumor invasion of renal pedicles (p > 0.05) and adjacent structures (p > 0.05) was the least responsive IDRF. IDRFs in different types of neuroblastoma decreased significantly after neoadjuvant chemotherapy (p < 0.05), while they were not significant in neuroblastoma with low and intermediate mitosis-karyorrhexis indices (p > 0.05). The number of residual IDRFs correlated positively with the volumes of intraoperative blood loss (r = 0.399, p = 0.008), but not with the presence of intraoperative complications (r = 0.111, p = 0.478).

Conclusions

IDRFs in different types of neuroblastoma can be significantly improved after neoadjuvant chemotherapy, while IDRFs in neuroblastoma with low and intermediate mitosis-karyorrhexis indices might not be easily improved. At the same time, the number of residual IDRFs after neoadjuvant chemotherapy might not correlate with the occurrence of intraoperative complications in abdominal neuroblastoma.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Available from the authors upon reasonable request.

References

  1. Pastor ER, Mousa SA (2019) Current management of neuroblastoma and future direction. Crit Rev Oncol Hematol 138:38-43. https://doi.org/10.1016/j.critrevonc.2019.03.013

    Article  PubMed  Google Scholar 

  2. Van Arendonk KJ, Chung DH (2019) Neuroblastoma: Tumor Biology and Its Implications for Staging and Treatment. Children (Basel) 6:12. https://doi.org/10.3390/children6010012

    Article  Google Scholar 

  3. Moreno L, Guo D, Irwin MS et al (2021) A nomogram of clinical and biologic factors to predict survival in children newly diagnosed with high-risk neuroblastoma: An International Neuroblastoma Risk Group project. Pediatr Blood Cancer 68: e28794. https://doi.org/10.1002/pbc.28794

    Article  PubMed  Google Scholar 

  4. Morgenstern DA, Bagatell R, Cohn SL et al (2019) The challenge of defining “ultra-high-risk” neuroblastoma. Pediatric Blood Cancer 66: e27556. https://doi.org/10.1002/pbc.27556

    Article  PubMed  Google Scholar 

  5. Fischer J, Pohl A, Volland R et al (2017) Complete surgical resection improves outcome in INRG high-risk patients with localized neuroblastoma older than 18 months. BMC Cancer 17:520. https://doi.org/10.1186/s12885-017-3493-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Monclair T, Brodeur GM, Ambros PF et al (2009) The International Neuroblastoma Risk Group (INRG) Staging System: An INRG Task Force Report. J Clin Oncol 27:298-303. https://doi.org/10.1200/JCO.2008.16.6876

    Article  PubMed  PubMed Central  Google Scholar 

  7. Irwin MS, Naranjo A, Zhang FF et al (2022) Revised Neuroblastoma Risk Classification System: A Report From the Children's Oncology Group. J Clin Oncol 39:3229-3241. https://doi.org/10.1200/JCO.21.00278

    Article  CAS  Google Scholar 

  8. Croteau N, Nuchtern J, LaQuaglia MP (2021) Management of Neuroblastoma in Pediatric Patients. Surg Oncol Clin N Am 30:291-304. https://doi.org/10.1016/j.soc.2020.11.010

    Article  PubMed  Google Scholar 

  9. Ryan AL AA, Pierro A, Morgenstern DA et al (2020) The Role of Surgery in High-risk Neuroblastoma. J Pediatr Hematol Oncol 42:1-7. https://doi.org/10.1097/MPH.0000000000001607

    Article  PubMed  Google Scholar 

  10. Rojas Y, Jaramillo S, Lyons K et al (2016) The optimal timing of surgical resection in high-risk neuroblastoma. J Pediatr Surg 51:1665-1669. https://doi.org/10.1016/j.jpedsurg.2016.05.021

    Article  PubMed  Google Scholar 

  11. Irtan S, Brisse HJ, Minard-Colin V et al (2015) Image-defined risk factor assessment of neurogenic tumors after neoadjuvant chemotherapy is useful for predicting intra-operative risk factors and the completeness of resection. Pediatr Blood Cancer 62:1543-1549. https://doi.org/10.1002/pbc.25511

    Article  PubMed  Google Scholar 

  12. Mansfield SA, McCarville MB, Lucas JT et al (2021) Impact of Neoadjuvant Chemotherapy on Image-Defined Risk Factors in High-Risk Neuroblastoma. Ann Surg Oncol 29:661-670. https://doi.org/10.1245/s10434-021-10386-3

    Article  PubMed  Google Scholar 

  13. Delforge X, De Cambourg P, Defachelles AS et al (2021) Unresectable thoracic neuroblastic tumors: Changes in image-defined risk factors after chemotherapy and impact on surgical management. Pediatr Blood Cancer 68: e29260. https://doi.org/10.1002/pbc.29260

    Article  PubMed  Google Scholar 

  14. Parikh D, Short M, Eshmawy M et al (2012) Surgical outcome analysis of paediatric thoracic and cervical neuroblastoma. Eur J Cardiothorac Surg 41:630-634. https://doi.org/10.1093/ejcts/ezr005

    Article  PubMed  Google Scholar 

  15. Vo KT, Matthay KK, Neuhaus J et al (2014) Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J Clin Oncol 32:3169-3176. https://doi.org/10.1200/JCO.2014.56.1621

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salim A, Raitio A, Pizer B et al (2021) Neuroblastoma: the association of anatomical tumour site, molecular biology and patient outcomes. ANZ J Surg 91:1000-1004. https://doi.org/10.1111/ans.16595

    Article  PubMed  Google Scholar 

  17. Sung KW, Yoo KH, Koo HH et al (2009) Neuroblastoma Originating from Extra-abdominal Sites: Association with Favorable Clinical and Biological Features. Journal of Korean Medical Science 24:461. https://doi.org/10.3346/jkms.2009.24.3.461

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen AM, Trout AT, Towbin AJ (2018) A review of neuroblastoma image-defined risk factors on magnetic resonance imaging. Pediatr Radiol 48:1337-1347. https://doi.org/10.1007/s00247-018-4117-9

    Article  PubMed  Google Scholar 

  19. Burnand K, Barone G, McHugh K et al (2019) Preoperative computed tomography scanning for abdominal neuroblastomas is superior to magnetic resonance imaging for safe surgical planning. Pediatr Blood Cancer 66: e27955. https://doi.org/10.1002/pbc.27955

    Article  PubMed  Google Scholar 

  20. Brisse HJ, Blanc T, Schleiermacher G et al (2017) Radiogenomics of neuroblastomas: Relationships between imaging phenotypes, tumor genomic profile and survival. PLoS One 12: e0185190. https://doi.org/10.1371/journal.pone.0185190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brisse H, McCarville M, Granata C et al (2011) Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology 261:243-257. https://doi.org/10.1148/radiol.11101352

    Article  PubMed  Google Scholar 

  22. Phelps HM, Ndolo JM, Van Arendonk KJ et al (2019) Association between image-defined risk factors and neuroblastoma outcomes. J Pediatr Surg 54:1184-1191. https://doi.org/10.1016/j.jpedsurg.2019.02.040

    Article  PubMed  PubMed Central  Google Scholar 

  23. Temple WC, Vo KT, Matthay KK et al (2021) Association of image-defined risk factors with clinical features, histopathology, and outcomes in neuroblastoma. Cancer Med 10:2232-2241. https://doi.org/10.1002/cam4.3663

    Article  PubMed  Google Scholar 

  24. Chen X, Wang H, Huang K et al (2021) CT-Based Radiomics Signature With Machine Learning Predicts MYCN Amplification in Pediatric Abdominal Neuroblastoma. Front Oncol 11:687884. https://doi.org/10.3389/fonc.2021.687884

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gestblom C, Hoehner JC, Påhlman S (1995) Proliferation and apoptosis in neuroblastoma: subdividing the mitosis-karyorrhexis index. Eur J Cancer 31A:458-463. https://doi.org/10.1016/0959-8049(95)00006-5

    Article  CAS  PubMed  Google Scholar 

  26. Valter K, Zhivotovsky B, Gogvadze V (2018) Cell death-based treatment of neuroblastoma. Cell Death Dis 9:113. https://doi.org/10.1038/s41419-017-0060-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmed AA, Zhang L, Reddivalla N et al (2017) Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors. Pediatr Hematol Oncol 34:165-185. https://doi.org/10.1080/08880018.2017.1330375

    Article  PubMed  Google Scholar 

  28. Yanishevski D, McCarville MB, Doubrovin M et al (2020) Impact of MYCN status on response of high-risk neuroblastoma to neoadjuvant chemotherapy. J Pediatr Surg 55:130-134. https://doi.org/10.1016/j.jpedsurg.2019.09.067

    Article  PubMed  Google Scholar 

  29. Brodeur GM SR, Barrett A, Berthold F et al (1988) International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol 6:1874-1881. https://doi.org/10.1200/JCO.1988.6.12.1874

    Article  CAS  PubMed  Google Scholar 

  30. Zhang AA, Pan C, Xu M et al (2019) Association of image-defined risk factors, tumor resectability, and prognosis in children with localized neuroblastoma. World J Pediatr 15:572-579. https://doi.org/10.1007/s12519-019-00274-y

    Article  CAS  PubMed  Google Scholar 

  31. Liu T, Lv Z, Xu W et al (2020) Role of image-defined risk factors in predicting surgical complications of localized neuroblastoma. Pediatr Surg Int 36:1167-1172. https://doi.org/10.1007/s00383-020-04731-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. Matthyssens LE, Nuchtern JG, Van De Ven CP, et al (2022) A Novel Standard for Systematic Reporting of Neuroblastoma Surgery: The International Neuroblastoma Surgical Report Form (INSRF): A Joint Initiative by the Pediatric Oncological Cooperative Groups SIOPEN∗, COG∗∗, and GPOH∗∗∗. Ann Surg 275(3): e575-e585. https://doi.org/10.1097/SLA.0000000000003947

    Article  PubMed  Google Scholar 

Download references

Funding

The project was funded by Project Supported by Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202000440); Basic Research and Frontier Exploration Project (Yuzhong District, Chongqing, China) (Grant No. 20200155); and Science and Health Joint Medical Research Project (Science and Technology Commission and Health Bureau, Chongqing, China) (Grant No. 2020FYYX128).

Author information

Authors and Affiliations

Authors

Contributions

HW—Conceptualization. HW, XC, JZ, ZK, JL—Data curation. HW—Formal analysis. HW, LZ, HD—Investigation. HW, XC, LH—Methodology. XC, LH—Project administration. LH—Supervision. HW, XC—Validation. HW—Visualization. HW—Writing.

Corresponding author

Correspondence to Ling He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This retrospective study was approved by the ethics committee of our institution.

Consent to participate

The requirement for patient informed consent was waived.

Consent for publication

The authors are responsible for correctness of the statements provided in the manuscript. The Editor-in-Chief reserves the right to reject submissions that do not meet the guidelines described in this section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, X., Zhu, J. et al. Changes in image-defined risk factors with neoadjuvant chemotherapy in pediatric abdominal neuroblastoma. Abdom Radiol 47, 3520–3530 (2022). https://doi.org/10.1007/s00261-022-03596-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03596-0

Keywords

Navigation