Log in

T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors

  • Pelvis
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Histopathologic prognostic factors of rectal cancer are closely associated with local recurrence and distant metastasis. We aim to investigate the feasibility of T2*WI in assessment of clinical prognostic factors of rectal cancer, and compare with DKI.

Methods

This retrospective study enrolled 50 out of 205 patients with rectal cancer according to the inclusion criteria. The following parameters were obtained: R2* from T2*WI, mean diffusivity (MDk), mean kurtosis (MK), and mean diffusivity (MDt) from DKI using tensor method. Above parameters were compared by Mann–Whitney U-test or students’ t test. Spearman correlations between different parameters and histopathological prognostic factors were determined. The diagnostic performances of R2* and DKI-derived parameters were analyzed by receiver operating characteristic curves (ROC), separately and jointly.

Results

There were positive correlations between R2* and multiple prognostic factors of rectal cancer such as T category, N category, tumor grade, CEA level, and LVI (P < 0.004). MDk and MDt showed negative correlations with almost all the histopathological prognostic factors except CRM and TIL involvement (P < 0.003). MK correlated positively with the prognostic factors except CA19-9 level and CRM involvement (P < 0.006). The AUC ranges were 0.724–0.950 for R2* and 0.755–0.913 for DKI-derived parameters for differentiation of prognostic factors. However, no significant differences of diagnostic performance were found between T2*WI, DKI, or the combined imaging methods in characterizing rectal cancer.

Conclusion

R2* and DKI-derived parameters were associated with different histopathological prognostic factors, and might act as noninvasive biomarkers for histopathological characterization of rectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW. Colorectal cancer. Lancet. 2005;365(9454):153-65. https://doi.org/https://doi.org/10.1016/S0140-6736(05)17706-X

    Article  PubMed  Google Scholar 

  2. Zlobec I, Lugli A. Prognostic and predictive factors in colorectal cancer. J Clin Pathol. 2008;61(5):561-9. https://doi.org/https://doi.org/10.1136/jcp.2007.054858

    Article  CAS  PubMed  Google Scholar 

  3. Sun H, Xu Y, Song A, Shi K, Wang W. Intravoxel Incoherent Motion MRI of Rectal Cancer: Correlation of Diffusion and Perfusion Characteristics With Prognostic Tumor Markers. AJR Am J Roentgenol. 2018;210(4):W139-W47. https://doi.org/https://doi.org/10.2214/AJR.17.18342

    Article  PubMed  Google Scholar 

  4. Lee JH, Kim SH, Jang HS, Chung HJ, Oh ST, Lee DS, et al. Preoperative elevation of carcinoembryonic antigen predicts poor tumor response and frequent distant recurrence for patients with rectal cancer who receive preoperative chemoradiotherapy and total mesorectal excision: a multi-institutional analysis in an Asian population. Int J Colorectal Dis. 2013;28(4):511-7. https://doi.org/https://doi.org/10.1007/s00384-012-1584-6

    Article  PubMed  Google Scholar 

  5. Shin YR, Kim KA, Im S, Hwang SS, Kim K. Prediction of KRAS Mutation in Rectal Cancer Using MRI. Anticancer Res. 2016;36(9):4799–804. https://doi.org/10.21873/anticanres.11039

  6. Bostel T, Dreher C, Wollschlager D, Mayer A, Konig F, Bickelhaupt S, et al. Exploring MR regression patterns in rectal cancer during neoadjuvant radiochemotherapy with daily T2- and diffusion-weighted MRI. Radiat Oncol. 2020;15(1):171. https://doi.org/https://doi.org/10.1186/s13014-020-01613-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Sande ME, Beets GL, Hupkens BJ, Breukink SO, Melenhorst J, Bakers FC, et al. Response assessment after (chemo)radiotherapy for rectal cancer: Why are we missing complete responses with MRI and endoscopy? Eur J Surg Oncol. 2019;45(6):1011-7. https://doi.org/https://doi.org/10.1016/j.ejso.2018.11.019

    Article  PubMed  Google Scholar 

  8. Cui Y, Cui X, Yang X, Zhuo Z, Du X, **n L, et al. Diffusion kurtosis imaging-derived histogram metrics for prediction of KRAS mutation in rectal adenocarcinoma: Preliminary findings. Journal of magnetic resonance imaging : JMRI. 2019;50(3):930-9. https://doi.org/https://doi.org/10.1002/jmri.26653

    Article  PubMed  Google Scholar 

  9. Granata V, Fusco R, Reginelli A, Delrio P, Selvaggi F, Grassi R, et al. Diffusion kurtosis imaging in patients with locally advanced rectal cancer: current status and future perspectives. J Int Med Res. 2019;47(6):2351-60. https://doi.org/https://doi.org/10.1177/0300060519827168

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun Y, **ao Q, Hu F, Fu C, Jia H, Yan X, et al. Diffusion kurtosis imaging in the characterisation of rectal cancer: utilizing the most repeatable region-of-interest strategy for diffusion parameters on a 3T scanner. European radiology. 2018;28(12):5211-20. https://doi.org/https://doi.org/10.1007/s00330-018-5495-y

    Article  PubMed  Google Scholar 

  11. Yu J, Xu Q, Song JC, Li Y, Dai X, Huang DY, et al. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer. European radiology. 2017;27(5):1848-57. https://doi.org/https://doi.org/10.1007/s00330-016-4529-6

    Article  PubMed  Google Scholar 

  12. Zhang XY, Wang L, Zhu HT, Li ZW, Ye M, Li XT, et al. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI. Radiology. 2020;296(1):56-64. https://doi.org/https://doi.org/10.1148/radiol.2020190936

    Article  PubMed  Google Scholar 

  13. Cui Y, Yang X, Du X, Zhuo Z, **n L, Cheng X. Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors. European radiology. 2018;28(4):1485-94. https://doi.org/https://doi.org/10.1007/s00330-017-5094-3

    Article  PubMed  Google Scholar 

  14. Wen Z, Chen Y, Yang X, Lu B, Liu Y, Shen B, et al. Application of magnetic resonance diffusion kurtosis imaging for distinguishing histopathologic subtypes and grades of rectal carcinoma. Cancer imaging : the official publication of the International Cancer Imaging Society. 2019;19(1):8. https://doi.org/https://doi.org/10.1186/s40644-019-0192-x

    Article  Google Scholar 

  15. Zhu L, Pan Z, Ma Q, Yang W, Shi H, Fu C, et al. Diffusion Kurtosis Imaging Study of Rectal Adenocarcinoma Associated with Histopathologic Prognostic Factors: Preliminary Findings. Radiology. 2017;284(1):66-76. https://doi.org/https://doi.org/10.1148/radiol.2016160094

    Article  PubMed  Google Scholar 

  16. Rodrigues LM, Howe FA, Griffiths JR, Robinson SP. Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. Journal of magnetic resonance imaging : JMRI. 2004;19(4):482-8. https://doi.org/https://doi.org/10.1002/jmri.20024

    Article  PubMed  Google Scholar 

  17. Vink EE, Boer A, Verloop WL, Spiering W, Voskuil M, Vonken E, et al. The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension. European radiology. 2015;25(7):1984-92. https://doi.org/https://doi.org/10.1007/s00330-014-3583-1

    Article  CAS  PubMed  Google Scholar 

  18. Li SP, Padhani AR, Makris A. Dynamic contrast-enhanced magnetic resonance imaging and blood oxygenation level-dependent magnetic resonance imaging for the assessment of changes in tumor biology with treatment. J Natl Cancer Inst Monogr. 2011;2011(43):103-7. https://doi.org/https://doi.org/10.1093/jncimonographs/lgr031

    Article  PubMed  Google Scholar 

  19. Zhang YD, Wu CJ, Wang Q, Zhang J, Wang XN, Liu XS, et al. Comparison of Utility of Histogram Apparent Diffusion Coefficient and R2* for Differentiation of Low-Grade From High-Grade Clear Cell Renal Cell Carcinoma. AJR Am J Roentgenol. 2015;205(2):W193-201. https://doi.org/https://doi.org/10.2214/AJR.14.13802

    Article  PubMed  Google Scholar 

  20. Wang Y, Shen Y, Hu X, Li Z, Feng C, Hu D, et al. Application of R2* and Apparent Diffusion Coefficient in Estimating Tumor Grade and T Category of Bladder Cancer. AJR Am J Roentgenol. 2020;214(2):383-9. https://doi.org/https://doi.org/10.2214/AJR.19.21668

    Article  PubMed  Google Scholar 

  21. Hallac RR, Ding Y, Yuan Q, McColl RW, Lea J, Sims RD, et al. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T. NMR in biomedicine. 2012;25(12):1321-30. https://doi.org/https://doi.org/10.1002/nbm.2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng Y, Luo Y, Hu X, Shen Y, Hu D, Li Z, et al. Quantitative T2*-Weighted Imaging and Reduced Field-of-View Diffusion-Weighted Imaging of Rectal Cancer: Correlation of R2* and Apparent Diffusion Coefficient With Histopathological Prognostic Factors. Frontiers in oncology. 2021;11:670156. https://doi.org/https://doi.org/10.3389/fonc.2021.670156

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 2011;65(3):823-36. https://doi.org/https://doi.org/10.1002/mrm.22655

    Article  PubMed  Google Scholar 

  24. Liang J, Ma R, Chen H, Zhang D, Ye W, Shi C, et al. Detection of Hyperacute Reactions of Desacetylvinblastine Monohydrazide in a Xenograft Model Using Intravoxel Incoherent Motion DWI and R2* Map**. AJR Am J Roentgenol. 2019;212(4):717-26. https://doi.org/https://doi.org/10.2214/AJR.18.20517

    Article  PubMed  Google Scholar 

  25. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4. https://doi.org/10.1245/s10434-010-0985-4

  26. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837-45

    Article  CAS  Google Scholar 

  27. Liu M, Guo X, Wang S, ** M, Wang Y, Li J, et al. BOLD-MRI of breast invasive ductal carcinoma: correlation of R2* value and the expression of HIF-1alpha. European radiology. 2013;23(12):3221-7. https://doi.org/https://doi.org/10.1007/s00330-013-2937-4

    Article  PubMed  Google Scholar 

  28. Huang Y, Lin Y, Hu W, Ma C, Lin W, Wang Z, et al. Diffusion Kurtosis at 3.0T as an in vivo Imaging Marker for Breast Cancer Characterization: Correlation With Prognostic Factors. Journal of magnetic resonance imaging : JMRI. 2019;49(3):845–56. https://doi.org/10.1002/jmri.26249

  29. Hectors SJ, Semaan S, Song C, Lewis S, Haines GK, Tewari A, et al. Advanced Diffusion-weighted Imaging Modeling for Prostate Cancer Characterization: Correlation with Quantitative Histopathologic Tumor Tissue Composition-A Hypothesis-generating Study. Radiology. 2018;286(3):918-28. https://doi.org/https://doi.org/10.1148/radiol.2017170904

    Article  PubMed  Google Scholar 

  30. Budjan J, Sauter EA, Zoellner FG, Lemke A, Wambsganss J, Schoenberg SO, et al. Diffusion kurtosis imaging of the liver at 3 Tesla: in vivo comparison to standard diffusion-weighted imaging. Acta Radiol. 2018;59(1):18-25. https://doi.org/https://doi.org/10.1177/0284185117706608

    Article  PubMed  Google Scholar 

  31. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432-40. https://doi.org/https://doi.org/10.1002/mrm.20508

    Article  PubMed  Google Scholar 

  32. Ianus A, Santiago I, Galzerano A, Montesinos P, Loucao N, Sanchez-Gonzalez J, et al. Higher-order diffusion MRI characterization of mesorectal lymph nodes in rectal cancer. Magn Reson Med. 2020;84(1):348-64. https://doi.org/https://doi.org/10.1002/mrm.28102

    Article  PubMed  Google Scholar 

  33. Rosenkrantz AB, Padhani AR, Chenevert TL, Koh DM, De Keyzer F, Taouli B, et al. Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. Journal of Magnetic Resonance Imaging : JMRI. 2015;42(5):1190-202. https://doi.org/https://doi.org/10.1002/jmri.24985

    Article  PubMed  Google Scholar 

  34. Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR in biomedicine. 2010;23(7):836-48. https://doi.org/https://doi.org/10.1002/nbm.1506

    Article  PubMed  Google Scholar 

  35. Nogueira L, Brandao S, Matos E, Nunes RG, Loureiro J, Ramos I, et al. Application of the diffusion kurtosis model for the study of breast lesions. European radiology. 2014;24(6):1197-203. https://doi.org/https://doi.org/10.1007/s00330-014-3146-5

    Article  PubMed  Google Scholar 

  36. Jansen JF, Stambuk HE, Koutcher JA, Shukla-Dave A. Non-gaussian analysis of diffusion-weighted MR imaging in head and neck squamous cell carcinoma: A feasibility study. AJNR Am J Neuroradiol. 2010;31(4):741-8. https://doi.org/https://doi.org/10.3174/ajnr.A1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Science Fund for Distinguished Young Scholars of China (No. 81925023) and the National Natural Science Foundation of China (No. 82071892).

Author information

Authors and Affiliations

Authors

Contributions

LCH are the guarantors of integrity of the entire study. HS, PY, LZY helped in the study concepts and design. HS and PY conducted the literature research. HS, PY, and WQS conducted the clinical studies. HS, PY, LB, and WQS conducted the experimental studies and data analysis. LB conducted the statistical analysis. HS and PY prepared and edited the manuscript. IK reviewed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Changhong Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted retrospectively under the approval of the Ethics Committee of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences. Written informed consent for participants was waived for this investigation according to the national legislation and the institutional requirements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Peng, Y., Wang, Q. et al. T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors. Abdom Radiol 47, 517–529 (2022). https://doi.org/10.1007/s00261-021-03369-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03369-1

Keywords

Navigation