Log in

Correlative investigation between routine clinical parameters of dual-energy computed tomography and the outcomes of extracorporeal shock wave lithotripsy in children with urolithiasis: a retrospective study

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the associations of DECT parameters with extracorporeal shock wave lithotripsy (ESWL) outcomes in pediatric patients.

Methods

A retrospective study of consecutive patients with calculi who underwent ESWL and DECT in our hospital was performed in 2011–2019. The primary outcome was DECT imaging’s correlation with ESWL outcomes. The secondary outcome was to determine DECT parameters independently predicting ESWL outcomes, including stone-free (SF) and residual stone (RS) statuses.

Results

The study included 207 patients. The mean CT attenuations at 140 kVp, 80 kVp, and 120 kVp and effective atomic number (Zeff) were significantly correlated with stone free (SF) and residual stone (RS) (P < 0.05). Areas under the curves (AUCs) of CT attenuations at 120 kVp, 80 kVp, 140 kVp, and dual-energy index (DEI) were 0.784 (95% CI 0.672–0.897), 0.780 (95% CI 0.677–0.884), 0.766 (95% CI 0.658–0.885), and 0.709 (95% CI 0.578–0.840) (all P < 0.05). With cutoffs of 882.5, 1330.5, 1042.5, and 0.103 for CT attenuations at 140 kVp, 80 kVp, 120 kVp, and DEI, respectively, sensitivities and specificities were 75.0% and 31.1%, 83.3% and 31.8%, 80.3% and 31.1%, and 58.3% and 44.7%, respectively.

Conclusion

Our results demonstrated that the parameters of DECT could be used to predict ESWL outcomes (especially the SF status) in children with urolithiasis. ESWL success can be accurately predicted by DECT, and it is hard to predict ESWL failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alelign T, Petros B (2018) Kidney Stone Disease: An Update on Current Concepts. Adv Urol 2018:3068365. doi: https://doi.org/10.1155/2018/3068365

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saw KC, McAteer JA, Fineberg NS, Monga AG, Chua GT, Lingeman JE, Williams JC, Jr. (2000) Calcium stone fragility is predicted by helical CT attenuation values. J Endourol 14 (6):471-474. doi: https://doi.org/10.1089/end.2000.14.471

    Article  CAS  PubMed  Google Scholar 

  3. Joseph P, Mandal AK, Singh SK, Mandal P, Sankhwar SN, Sharma SK (2002) Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J Urol 167 (5):1968-1971. doi: https://doi.org/10.1016/s0022-5347(05)65064-1

    Article  PubMed  Google Scholar 

  4. Pareek G, Armenakas NA, Fracchia JA (2003) Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy. J Urol 169 (5):1679-1681. doi: https://doi.org/10.1097/01.ju.0000055608.92069.3a

    Article  PubMed  Google Scholar 

  5. Favela R, Gutierrez J, Bustos J, Castano-Tostado E, Loske AM (2005) CT attenuation value and shockwave fragmentation. J Endourol 19 (1):5-10. doi: https://doi.org/10.1089/end.2005.19.5

    Article  PubMed  Google Scholar 

  6. Pareek G, Armenakas NA, Panagopoulos G, Bruno JJ, Fracchia JA (2005) Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Urology 65 (1):33-36. doi: https://doi.org/10.1016/j.urology.2004.08.004

    Article  PubMed  Google Scholar 

  7. Gupta NP, Ansari MS, Kesarvani P, Kapoor A, Mukhopadhyay S (2005) Role of computed tomography with no contrast medium enhancement in predicting the outcome of extracorporeal shock wave lithotripsy for urinary calculi. BJU Int 95 (9):1285-1288. doi: https://doi.org/10.1111/j.1464-410X.2005.05520.x

    Article  PubMed  Google Scholar 

  8. Pareek G, Hedican SP, Lee FT, Jr., Nakada SY (2005) Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology 66 (5):941-944. doi: https://doi.org/10.1016/j.urology.2005.05.011

    Article  PubMed  Google Scholar 

  9. Perks AE, Gotto G, Teichman JM (2007) Shock wave lithotripsy correlates with stone density on preoperative computerized tomography. J Urol 178 (3 Pt 1):912-915. doi: https://doi.org/10.1016/j.juro.2007.05.043

    Article  PubMed  Google Scholar 

  10. El-Nahas AR, El-Assmy AM, Mansour O, Sheir KZ (2007) A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol 51 (6):1688-1693; discussion 1693-1684. https://doi.org/10.1016/j.eururo.2006.11.048

  11. Zarse CA, Hameed TA, Jackson ME, Pishchalnikov YA, Lingeman JE, McAteer JA, Williams JC, Jr. (2007) CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res 35 (4):201-206. doi: https://doi.org/10.1007/s00240-007-0104-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tanaka M, Yokota E, Toyonaga Y, Shimizu F, Ishii Y, Fujime M, Horie S (2013) Stone attenuation value and cross-sectional area on computed tomography predict the success of shock wave lithotripsy. Korean J Urol 54 (7):454-459. doi: https://doi.org/10.4111/kju.2013.54.7.454

    Article  PubMed  PubMed Central  Google Scholar 

  13. Acharya S, Goyal A, Bhalla AS, Sharma R, Seth A, Gupta AK (2015) In vivo characterization of urinary calculi on dual-energy CT: going a step ahead with sub-differentiation of calcium stones. Acta Radiol 56 (7):881-889. doi: https://doi.org/10.1177/0284185114538251

    Article  PubMed  Google Scholar 

  14. Kacker R, Zhao L, Macejko A, Thaxton CS, Stern J, Liu JJ, Nadler RB (2008) Radiographic parameters on noncontrast computerized tomography predictive of shock wave lithotripsy success. J Urol 179 (5):1866-1871. doi: https://doi.org/10.1016/j.juro.2008.01.038

    Article  PubMed  Google Scholar 

  15. Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, RJ DAH, Pace KT (2008) Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 72 (4):765-769. doi: https://doi.org/10.1016/j.urology.2008.05.046

    Article  PubMed  Google Scholar 

  16. Ouzaid I, Al-qahtani S, Dominique S, Hupertan V, Fernandez P, Hermieu JF, Delmas V, Ravery V (2012) A 970 Hounsfield units (HU) threshold of kidney stone density on non-contrast computed tomography (NCCT) improves patients’ selection for extracorporeal shockwave lithotripsy (ESWL): evidence from a prospective study. BJU Int 110 (11 Pt B):E438-442. https://doi.org/10.1111/j.1464-410x.2012.10964.x

  17. El-Assmy A, El-Nahas AR, Abou-El-Ghar ME, Awad BA, Sheir KZ (2013) Kidney stone size and hounsfield units predict successful shockwave lithotripsy in children. Urology 81 (4):880-884. doi: https://doi.org/10.1016/j.urology.2012.12.012

    Article  PubMed  Google Scholar 

  18. McAdams S, Kim N, Dajusta D, Monga M, Ravish IR, Nerli R, Baker L, Shukla AR (2010) Preoperative stone attenuation value predicts success after shock wave lithotripsy in children. J Urol 184 (4 Suppl):1804-1809. doi: https://doi.org/10.1016/j.juro.2010.03.112

    Article  PubMed  Google Scholar 

  19. Sfoungaristos S, Hidas G, Gofrit ON, Yutkin V, Latke A, Landau EH, Pode D, Duvdevani M (2015) Do we really need kidneys-ureters-bladder radiography to predict stone radiopacity before treatment with shockwave lithotripsy? Development and internal validation of a novel predictive model based on computed tomography parameters. J Endourol 29 (5):498-503. doi: https://doi.org/10.1089/end.2014.0190.ECC

    Article  PubMed  Google Scholar 

  20. Mullhaupt G, Engeler DS, Schmid HP, Abt D (2015) How do stone attenuation and skin-to-stone distance in computed tomography influence the performance of shock wave lithotripsy in ureteral stone disease? BMC Urol 15:72. doi: https://doi.org/10.1186/s12894-015-0069-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mannil M, von Spiczak J, Hermanns T, Poyet C, Alkadhi H, Fankhauser CD (2018) Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones. J Urol 200 (4):829-836. doi: https://doi.org/10.1016/j.juro.2018.04.059

    Article  PubMed  Google Scholar 

  22. Magistro G, Bregenhorn P, Krauß B, Nörenberg D, D’Anastasi M, Graser A, Weinhold P, Strittmatter F, Stief CG, Staehler M (2019) Optimized management of urolithiasis by coloured stent-stone contrast using dual-energy computed tomography (DECT). BMC Urol 19 (1):29. doi: https://doi.org/10.1186/s12894-019-0459-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chu AJ, Lee JM, Lee YJ, Moon SK, Han JK, Choi BI (2012) Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. Br J Radiol 85 (1018):e891-898. doi: https://doi.org/10.1259/bjr/26129418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Largo R, Stolzmann P, Fankhauser CD, Poyet C, Wolfsgruber P, Sulser T, Alkadhi H, Winklhofer S (2016) Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study. Urolithiasis 44 (3):271-276. doi: https://doi.org/10.1007/s00240-015-0824-y

    Article  PubMed  Google Scholar 

  25. Ferrero A, Montoya JC, Vaughan LE, Huang AE, McKeag IO, Enders FT, Williams JC, Jr., McCollough CH (2016) Quantitative Prediction of Stone Fragility From Routine Dual Energy CT: Ex vivo proof of Feasibility. Acad Radiol 23 (12):1545-1552. doi: https://doi.org/10.1016/j.acra.2016.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  26. Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, Sahani DV (2016) Material Separation Using Dual-Energy CT: Current and Emerging Applications. Radiographics 36 (4):1087-1105. doi: https://doi.org/10.1148/rg.2016150220

    Article  PubMed  Google Scholar 

  27. Mahalingam H, Lal A, Mandal AK, Singh SK, Bhattacharyya S, Khandelwal N (2015) Evaluation of low-dose dual energy computed tomography for in vivo assessment of renal/ureteric calculus composition. Korean J Urol 56 (8):587-593. doi: https://doi.org/10.4111/kju.2015.56.8.587

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yamashita Y, Kimura M, Kitahara M, Hamaguchi T, Kanno I, Ohtaka M, Hashimoto M, Ara K, Onabe H (2014) Measurement of effective atomic numbers using energy-resolved computed tomography. J Nucl Sci Technol 51 (10):1256-1263. doi: https://doi.org/10.1080/00223131.2014.919881

    Article  CAS  Google Scholar 

  29. Qu M, Ramirez-Giraldo JC, Leng S, Williams JC, Vrtiska TJ, Lieske JC, McCollough CH (2011) Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol 196 (6):1279-1287. doi: https://doi.org/10.2214/AJR.10.5041

    Article  PubMed  PubMed Central  Google Scholar 

  30. Boll DT, Patil NA, Paulson EK, Merkle EM, Simmons WN, Pierre SA, Preminger GM (2009) Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition–pilot study. Radiology 250 (3):813-820. doi: https://doi.org/10.1148/radiol.2503080545

    Article  PubMed  Google Scholar 

  31. Jia J, Shen X, Wang L, Zhang T, Xu M, Fang X, Xu G, Qian C, Wu Y, Geng H (2013) Extracorporeal shock wave lithotripsy is effective in treating single melamine induced urolithiasis in infants and young children. J Urol 189 (4):1498-1502. doi: https://doi.org/10.1016/j.juro.2012.11.109

    Article  PubMed  Google Scholar 

  32. Bres-Niewada E, Dybowski B, Radziszewski P (2014) Predicting stone composition before treatment - can it really drive clinical decisions? Cent European J Urol 67 (4):392-396. doi: https://doi.org/10.5173/ceju.2014.04.art15

    Article  PubMed  PubMed Central  Google Scholar 

  33. Galli R, Sighinolfi MC, Micali S, Martorana E, Rosa M, Mofferdin A, Bianchi G (2017) Advantages of the supine transgluteal approach for distal ureteral stone extracorporeal shock wave lithotripsy: outcomes based on CT characteristics. Minerva Urol Nefrol 69 (2):189-194. doi: https://doi.org/10.23736/S0393-2249.16.02741-7

    Article  PubMed  Google Scholar 

  34. Hevia M, Garcia A, Ancizu FJ, Merino I, Velis JM, Tienza A, Algarra R, Domenech P, Diez-Caballero F, Rosell D, Pascual JI, Robles JE (2017) Predicting the effectiveness of extracorporeal shock wave lithotripsy on urinary tract stones. Risk groups for accurate retreatment. Actas Urol Esp 41 (7):451-457. https://doi.org/10.1016/j.acuro.2016.12.008

  35. Mannil M, von Spiczak J, Hermanns T, Alkadhi H, Fankhauser CD (2018) Prediction of successful shock wave lithotripsy with CT: a phantom study using texture analysis. Abdom Radiol (NY) 43 (6):1432-1438. doi: https://doi.org/10.1007/s00261-017-1309-y

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the scientific research fund of Shanghai health bureau [Grant Number 20124168]. The manuscript content is the sole responsibility of the authors and does not necessarily represent the official views of Shanghai health bureau.

Author information

Authors and Affiliations

Authors

Contributions

BWT carried out the studies, participated in collecting data, and drafted the manuscript. JYJ and LWY performed the statistical analysis and participated in its design. HML and DBW helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Beiwu Tu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to participate

Written informed consent was obtained from each participant.

Ethics approval

The present study was approved by the ethics committee of **nhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai. The requirement for informed consent was waived for this retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

261_2021_3162_MOESM1_ESM.tif

Supplementary material 1 (TIFF 322 kb) Supplementary Figure 1: Parameter acquisition. Ratio, Ratio of 80 kVp to 140 kVp; DEI, Dual Energy Index; Zeff, Effective atomic number.

Supplementary material 2 (TIFF 128 kb) Supplementary Figure 2: Study flowchart.

261_2021_3162_MOESM3_ESM.tif

Supplementary material 3 (TIFF 171 kb) Supplementary Figure 3: Correlations of various parameters with first ESWL outcome. Attenuations at 140 kVp, 80 kVp, and 120 kVp were represented in Hounsfield unit (HU). The unit of DEI, DER, and Zeff was the measured value (MV). Values of DEI, DER, and Zeff were MV*1000, MV*100, and MV*10, respectively. SF, stone-free; RS, residual stone; Zeff, effective atomic number; DEI, dual-energy index; DER, CT number ratio in dual-energy.

261_2021_3162_MOESM4_ESM.tif

Supplementary material 4 (TIFF 879 kb) Supplementary Figure 4: Receiver operating characteristic (ROC) curves for evaluating parameter performances in predicting ESWL outcomes. Outcome=0 (SF) or 1 (RS). Attenuation values and DEI were significantly related to ESWL success (SF). SF, stone-free; RS, residual stone; ESWL, extracorporeal shock wave lithotripsy.

Supplementary material 5 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, B., Jia, J., Yu, L. et al. Correlative investigation between routine clinical parameters of dual-energy computed tomography and the outcomes of extracorporeal shock wave lithotripsy in children with urolithiasis: a retrospective study. Abdom Radiol 46, 4881–4887 (2021). https://doi.org/10.1007/s00261-021-03162-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03162-0

Keywords

Navigation