Log in

Imaging the fetal nonhuman primate brain with SV2A positron emission tomography (PET)

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Exploring synaptic density changes during brain growth is crucial to understanding brain development. Previous studies in nonhuman primates report a rapid increase in synapse number between the late gestational period and the early neonatal period, such that synaptic density approaches adult levels by birth. Prenatal synaptic development may have an enduring impact on postnatal brain development, but precisely how synaptic density changes in utero are unknown because current methods to quantify synaptic density are invasive and require post-mortem brain tissue.

Methods

We used synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) radioligands [11C]UCB-J and [18F]Syn-VesT-1 to conduct the first assessment of synaptic density in the develo** fetal brain in gravid rhesus monkeys. Eight pregnant monkeys were scanned twice during the third trimester at two imaging sites. Fetal post-mortem samples were collected near term in a subset of subjects to quantify SV2A density by Western blot.

Results

Image-derived fetal brain SV2A measures increased during the third trimester. SV2A concentrations were greater in subcortical regions than in cortical regions at both gestational ages. Near term, SV2A density was higher in primary motor and visual areas than respective associative regions. Post-mortem quantification of SV2A density was significantly correlated with regional SV2A PET measures.

Conclusion

While further study is needed to determine the exact relationship of SV2A and synaptic density, the imaging paradigm developed in the current study allows for the effective in vivo study of SV2A development in the fetal brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The raw data and datasets used and/or analyzed in the current study will be made available upon reasonable request to the corresponding and participating authors as deemed appropriate, and in line with the data sharing policy.

Code of Availability

The code used in the current study will be made available upon reasonable request to the corresponding and participating authors as deemed appropriate, and in line with the data sharing policy.

References

  1. Huttenlocher PR. Synaptic density in human frontal cortex — developmental changes and effects of aging. Brain Res. 1979;163:195–205. https://doi.org/10.1016/0006-8993(79)90349-4.

    Article  CAS  PubMed  Google Scholar 

  2. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78. https://doi.org/10.1002/(sici)1096-9861(19971020)387:2%3c167::aid-cne1%3e3.0.co;2-z.

    Article  CAS  PubMed  Google Scholar 

  3. Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H. Synaptogenesis in human visual cortex–evidence for synapse elimination during normal development. Neurosci Lett. 1982;33:247–52. https://doi.org/10.1016/0304-3940(82)90379-2.

    Article  CAS  PubMed  Google Scholar 

  4. Bourgeois JP, Jastreboff PJ, Rakic P. Synaptogenesis in visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction. Proc Natl Acad Sci U S A. 1989;86:4297–301. https://doi.org/10.1073/pnas.86.11.4297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bourgeois JP, Rakic P. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci. 1993;13:2801–20.

    Article  CAS  Google Scholar 

  6. Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986;232:232–5. https://doi.org/10.1126/science.3952506.

    Article  CAS  PubMed  Google Scholar 

  7. Zecevic N, Bourgeois JP, Rakic P. Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Res Dev Brain Res. 1989;50:11–32. https://doi.org/10.1016/0165-3806(89)90124-7.

    Article  CAS  PubMed  Google Scholar 

  8. Zecevic N, Rakic P. Synaptogenesis in monkey somatosensory cortex. Cereb Cortex. 1991;1:510–23. https://doi.org/10.1093/cercor/1.6.510.

    Article  CAS  PubMed  Google Scholar 

  9. Murray RM, O’Callaghan E, Castle DJ, Lewis SW. A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull. 1992;18:319–32. https://doi.org/10.1093/schbul/18.2.319.

    Article  CAS  PubMed  Google Scholar 

  10. Volk DW, Edelson JR, Lewis DA. Altered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia. Schizophr Res. 2016;177:3–9. https://doi.org/10.1016/j.schres.2016.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Volk DW, Lewis DA. Early developmental disturbances of cortical inhibitory neurons: contribution to cognitive deficits in schizophrenia. Schizophr Bull. 2014;40:952–7. https://doi.org/10.1093/schbul/sbu111.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9. https://doi.org/10.1001/archpsyc.1987.01800190080012.

    Article  CAS  PubMed  Google Scholar 

  13. Bajjalieh SM, Peterson K, Shinghal R, Scheller RH. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science. 1992;257:1271–3. https://doi.org/10.1126/science.1519064.

    Article  CAS  PubMed  Google Scholar 

  14. Nabulsi NB, Mercier J, Holden D, Carre S, Najafzadeh S, Vandergeten MC, et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med. 2016;57:777–84. https://doi.org/10.2967/jnumed.115.168179.

    Article  CAS  PubMed  Google Scholar 

  15. Li S, Cai Z, Wu X, Holden D, Pracitto R, Kapinos M, et al. Synthesis and in vivo evaluation of a novel PET radiotracer for imaging of synaptic vesicle glycoprotein 2A (SV2A) in nonhuman primates. ACS Chem Neurosci. 2019;10:1544–54. https://doi.org/10.1021/acschemneuro.8b00526.

    Article  CAS  PubMed  Google Scholar 

  16. Chen MK, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin SF, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 2018;75:1215–24. https://doi.org/10.1001/jamaneurol.2018.1836.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mecca AP, Chen MK, O’Dell RS, Naganawa M, Toyonaga T, Godek TA, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 2020;16:974–82. https://doi.org/10.1002/alz.12097.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1529. https://doi.org/10.1038/s41467-019-09562-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Finnema SJ, Toyonaga T, Detyniecki K, Chen MK, Dias M, Wang Q, et al. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [(11) C]UCB-J positron emission tomography study. Epilepsia. 2020;61:2183–93. https://doi.org/10.1111/epi.16653.

    Article  CAS  PubMed  Google Scholar 

  20. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra96. https://doi.org/10.1126/scitranslmed.aaf6667.

    Article  CAS  PubMed  Google Scholar 

  21. Tarantal AF (2005) Ultrasound Imaging in Rhesus (Macaca mulatta) and Long-Tailed (Macaca fascicularis) Macaques. Reproductive and Research Applications. In: The Laboratory Primate, Ch. 20. Elsevier Academic Press, Cambridge, pp 317–315

  22. Berg E, Gill H, Marik J, Ogasawara A, Williams S, van Dongen G, et al. Total-body PET and highly stable chelators together enable meaningful (89)Zr-antibody PET studies up to 30 days after injection. J Nucl Med. 2020;61:453–60. https://doi.org/10.2967/jnumed.119.230961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berg E, Zhang X, Bec J, Judenhofer MS, Patel B, Peng Q, et al. Development and evaluation of mini-EXPLORER: a long axial field-of-view PET scanner for nonhuman primate imaging. J Nucl Med. 2018;59:993–8. https://doi.org/10.2967/jnumed.117.200519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Young JT, Shi Y, Niethammer M, Grauer M, Coe CL, Lubach GR, et al. The UNC-Wisconsin Rhesus Macaque Neurodevelopment Database: a structural MRI and DTI database of early postnatal development. Front Neurosci. 2017;11:29. https://doi.org/10.3389/fnins.2017.00029.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reveley C, Gruslys A, Ye FQ, Glen D, Samaha J, Russ BE, et al. Three-dimensional digital template atlas of the Macaque Brain. Cereb Cortex. 2017;27:4463–77. https://doi.org/10.1093/cercor/bhw248.

  26. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40. https://doi.org/10.1097/00004647-199609000-00008.

    Article  CAS  PubMed  Google Scholar 

  27. Bartlett RM, Dejesus OT, Barnhart TE, Nickles RJ, Christian BT, Graner JL, et al. Fetal dopamine receptor characteristics assessed in utero. J Cereb Blood Flow Metab. 2010;30:1437–40. https://doi.org/10.1038/jcbfm.2010.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tarantal AF, Hartigan-O’Connor DJ, Penna E, Kreutz A, Martinez ML, Noctor SC. Fetal Rhesus Monkey first trimester Zika virus infection impacts cortical development in the second and third trimesters. Cereb Cortex. 2021;31:2309–21. https://doi.org/10.1093/cercor/bhaa336.

    Article  PubMed  Google Scholar 

  29. Lancaster F, Delaney C, Samorajski T. Synaptic density of caudate-putamen and visual cortex following exposure to ethanol in utero. Int J Dev Neurosci. 1989;7:581–9. https://doi.org/10.1016/0736-5748(89)90017-8.

    Article  CAS  PubMed  Google Scholar 

  30. Chugani HT, Phelps ME. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science. 1986;231:840–3. https://doi.org/10.1126/science.3945811.

    Article  CAS  PubMed  Google Scholar 

  31. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97. https://doi.org/10.1002/ana.410220408.

    Article  CAS  PubMed  Google Scholar 

  32. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145:61–83. https://doi.org/10.1002/cne.901450105.

    Article  CAS  PubMed  Google Scholar 

  33. McLeod F, Marzo A, Podpolny M, Galli S, Salinas P. Evaluation of synapse density in hippocampal rodent brain slices. J Vis Exp. 2017. https://doi.org/10.3791/56153.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li M, Cui Z, Niu Y, Liu B, Fan W, Yu D, et al. Synaptogenesis in the develo** mouse visual cortex. Brain Res Bull. 2010;81:107–13. https://doi.org/10.1016/j.brainresbull.2009.08.028.

    Article  PubMed  Google Scholar 

  35. Crevecoeur J, Foerch P, Doupagne M, Thielen C, Vandenplas C, Moonen G, et al. Expression of SV2 isoforms during rodent brain development. BMC Neurosci. 2013;14:87. https://doi.org/10.1186/1471-2202-14-87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vanoye-Carlo A, Gomez-Lira G. Differential expression of SV2A in hippocampal glutamatergic and GABAergic terminals during postnatal development. Brain Res. 2019;1715:73–83. https://doi.org/10.1016/j.brainres.2019.03.021.

    Article  CAS  PubMed  Google Scholar 

  37. Clancy B, Darlington RB, Finlay BL. Translating developmental time across mammalian species. Neuroscience. 2001;105:7–17. https://doi.org/10.1016/s0306-4522(01)00171-3.

    Article  CAS  PubMed  Google Scholar 

  38. Nakamura H, Kobayashi S, Ohashi Y, Ando S. Age-changes of brain synapses and synaptic plasticity in response to an enriched environment. J Neurosci Res. 1999;56:307–15. https://doi.org/10.1002/(SICI)1097-4547(19990501)56:3%3c307::AID-JNR10%3e3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  39. Blue ME, Parnavelas JG. The formation and maturation of synapses in the visual cortex of the rat II Quantitative analysis. J Neurocytol. 1983;12:697–712. https://doi.org/10.1007/BF01181531.

    Article  CAS  PubMed  Google Scholar 

  40. Mutch SA, Kensel-Hammes P, Gadd JC, Fujimoto BS, Allen RW, Schiro PG, et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci. 2011;31:1461–70. https://doi.org/10.1523/JNEUROSCI.3805-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, et al. Molecular anatomy of a trafficking organelle. Cell. 2006;127:831–46. https://doi.org/10.1016/j.cell.2006.10.030.

    Article  CAS  PubMed  Google Scholar 

  42. Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A. 1999;96:15268–73. https://doi.org/10.1073/pnas.96.26.15268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308. https://doi.org/10.1097/00004728-197906000-00001.

    Article  CAS  PubMed  Google Scholar 

  44. Rossano S, Toyonaga T, Finnema SJ, Naganawa M, Lu Y, Nabulsi N, et al. Assessment of a white matter reference region for (11)C-UCB-J PET quantification. J Cereb Blood Flow Metab. 2020;40:1890–901. https://doi.org/10.1177/0271678X19879230.

    Article  CAS  PubMed  Google Scholar 

  45. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35:147–68. https://doi.org/10.1038/npp.2009.115.

    Article  PubMed  Google Scholar 

  46. Carson RE, Naganawa M, Matuskey D, Mecca A, Pittman B, Toyonaga T, et al. Age and sex effects on synaptic density in healthy humans as assessed with SV2A PET. Journal of Nuclear Medicine. 2018;59:541–541.

    Google Scholar 

  47. Michiels L, Delva A, van Aalst J, Ceccarini J, Vandenberghe W, Vandenbulcke M, et al. Synaptic density in healthy human aging is not influenced by age or sex: a (11)C-UCB-J PET study. Neuroimage. 2021;232: 117877. https://doi.org/10.1016/j.neuroimage.2021.117877.

    Article  CAS  PubMed  Google Scholar 

  48. Benveniste H, Fowler JS, Rooney WD, Moller DH, Backus WW, Warner DA, et al. Maternal-fetal in vivo imaging: a combined PET and MRI study. J Nucl Med. 2003;44:1522–30.

    PubMed  Google Scholar 

  49. Benveniste H, Fowler JS, Rooney WD, Scharf BA, Backus WW, Izrailtyan I, et al. Cocaine is pharmacologically active in the nonhuman primate fetal brain. Proc Natl Acad Sci U S A. 2010;107:1582–7. https://doi.org/10.1073/pnas.0909585107.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Smart K, Liu H, Matuskey D, Chen MK, Torres K, Nabulsi N, et al. Binding of the synaptic vesicle radiotracer [(11)C]UCB-J is unchanged during functional brain activation using a visual stimulation task. J Cereb Blood Flow Metab. 2021;41:1067–79. https://doi.org/10.1177/0271678X20946198.

    Article  CAS  PubMed  Google Scholar 

  51. Schneider ML, Moore CF, Kraemer GW, Roberts AD, DeJesus OT. The impact of prenatal stress, fetal alcohol exposure, or both on development: perspectives from a primate model. Psychoneuroendocrinology. 2002;27:285–98. https://doi.org/10.1016/s0306-4530(01)00050-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the nonhuman primate team at the Yale PET Center, including Daniel Holden, Cynthia Santaniello, Courtney Chabina, Kristin Koehl-Carabetta, and Amanda Harsche, for their assistance in completing the PET studies. The authors also acknowledge Dr. Alvaro Duque and the Rakic Breeding Colony for their assistance with NHP breeding at Yale and the staff at the California National Primate Research Center.

Funding

These studies were supported by National Institutes of Health (NIH) grants (no. MH120615 [SG], and no. U42-OD027094 [AT]), and the California National Primate Research Center base operating grant (no. OD011107). In vivo imaging was performed with instrumentation funded by the NIH (S10 grants RR029245, OD016261, and RR025063), and supported through the Primate Center Multimodal Imaging Core.

Author information

Authors and Affiliations

Authors

Contributions

SR collected and analyzed PET data, completed Western blotting and analysis, and prepared manuscript; TT supervised Western blotting and analysis, and manuscript preparation; EB collected and reconstructed PET data; IL analyzed PET data; KF performed PET imaging and data collection; NN, JR, SL, YY, ZF, and HH developed, synthesized, and QC of PET tracers; DK synthesized PET tracers; HB contributed to study design; AFT identified and assigned animals, performed all monitoring and imaging including ultrasound and PET/CT, data collection, performed all fetal tissue collections, contributed to study design, and manuscript preparation; SG analyzed PET data, contributed to study design, and manuscript preparation; REC contributed to study design, performed PET experiments, data analysis, and manuscript preparation.

Corresponding author

Correspondence to Samantha Rossano.

Ethics declarations

Ethics approval

All procedures were carried out in strict accordance to the guidelines set forth in the Animal Welfare Act and the Guide for the Care and Use of Laboratory animals. All animal procedures were approved prior to implementation by Yale University’s Institutional Animal Care and Use Committee (IACUC) and by the IACUC at the University of California, Davis.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossano, S., Toyonaga, T., Berg, E. et al. Imaging the fetal nonhuman primate brain with SV2A positron emission tomography (PET). Eur J Nucl Med Mol Imaging 49, 3679–3691 (2022). https://doi.org/10.1007/s00259-022-05825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05825-6

Keywords

Navigation