Log in

Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

  • Molecular Imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by 99mTcO4 scintigraphy in skeletal muscle of rats.

Methods

Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5×107, 2×108 or 1×109 plaque forming units (pfu)] or β-galactosidase gene (Rad-CMV-LacZ 1×109 pfu) was injected into the right biceps femoris muscle of rats (n=5–6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of 99mTcO4 (1.85 MBq). An additional two rats injected with 1×109 pfu of Rad-CMV-hNIS underwent 99mTcO4 scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of 99mTcO4 and measurement of hNIS mRNA expression.

Results

In all the rats injected with 1×109 pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by 99mTcO4 scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of 99mTcO4 was retained in the liver (p<0.001) and the right muscle (p<0.05), with the highest uptake in rats injected with 1×109 pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1×109 pfu of Rad-CMV-hNIS (p<0.05), with a positive correlation with the imaging counts (r=0.810, p<0.05) and the biodistribution (r=0.847, p<0.001). Hot spots in rats injected with 1×109 pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate.

Conclusion

This study illustrated that 99mTcO4 scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in skeletal muscle of rats, non-invasively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan TA, Sellke FW, Laham RJ. Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther 2003;10:285–91

    Article  CAS  PubMed  Google Scholar 

  2. Romero NB, Benveniste O, Payan C, Braun S, Squiban P, Herson S, Fardeau M. Current protocol of a research phase I clinical trial of full-length dystrophin plasmid DNA in Duchenne/Becker muscular dystrophies. Part II. Clinical protocol. Neuromuscul Disord 2002;12(Suppl 1):S45–8

    Google Scholar 

  3. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW, High KA. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000;24:257–61

    Article  CAS  PubMed  Google Scholar 

  4. Pitard B, Pollard H, Agbulut O, Lambert O, Vilquin JT, Cherel Y, Abadie J, Samuel JL, Rigaud JL, Menoret S, Anegon I, Escande D. A nonionic amphiphilic agent promotes gene delivery in vivo to skeletal and cardiac muscles. Hum Gene Ther 2002;13:1767–75

    Article  CAS  PubMed  Google Scholar 

  5. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–8

    CAS  PubMed  Google Scholar 

  6. Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K, Pathak R, Raper SE, Wilson JM. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997;3:306–12

    CAS  PubMed  Google Scholar 

  7. Quantin B, Perricaudet LD, Tajbakhsh S, Mandel JL. Adenovirus as an expression vector in muscle cells in vivo. Proc Natl Acad Sci U S A 1992;89:2581–4

    CAS  PubMed  Google Scholar 

  8. Sapru MK, McCormick KM, Thimmapaya B. High-efficiency adenovirus-mediated in vivo gene transfer into neonatal and adult rodent skeletal muscle. J Neurosci Methods 2002;114:99–106

    Article  CAS  PubMed  Google Scholar 

  9. Ishii A, Hagiwara Y, Saito Y, Yamamoto K, Yuasa K, Sato Y, Arahata K, Shoji S, Nonaka I, Saito I, Nabeshima Y, Takeda S. Effective adenovirus-mediated gene expression in adult murine skeletal muscle. Muscle Nerve 1999;22:592–9

    Article  CAS  PubMed  Google Scholar 

  10. Acsadi G, Jani A, Massie B, Simoneau M, Holland P, Blaschuk K, Karpati G. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum Mol Genet 1994;3:579–84

    CAS  PubMed  Google Scholar 

  11. Huard J, Lochmuller H, Acsadi G, Jani A, Massie B, Karpati Gl. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 1995;2:107–15

    CAS  PubMed  Google Scholar 

  12. Lefesvre P, Attema J, van Bekkum D. Pharmacogenetic heterogeneity of transgene expression in muscle and tumours. BMC Pharmacol 2003;3:11

    Article  PubMed  Google Scholar 

  13. Yang Y, Haecker SE, Su Q, Wilson JM. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet 1996;5:1703–12

    Article  CAS  PubMed  Google Scholar 

  14. Blasberg RG, Tjuvajev JG. Molecular-genetic imaging: current and future prospectives. J Clin Invest 2003;111:1620–9

    Article  CAS  PubMed  Google Scholar 

  15. Gambhir SS, Barrio JR, Herschman HR, Phelps ME. Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 1999;26:481–90

    CAS  PubMed  Google Scholar 

  16. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188–200

    CAS  PubMed  Google Scholar 

  17. Barton KN, Tyson D, Stricker H, Lew YS, Heisey G, Koul S, de la Zerda A, Yin FF, Yan H, Nagaraja TN, Randall KA, ** GK, Fenstermacher JD, Jhinag S, Kim JH, Freytag SO, Brown SL. GENIS: gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo. Mol Ther 2003;8:508–18

    Article  CAS  PubMed  Google Scholar 

  18. Lee WW, Moon DH, Park SY, ** JS, Kim SJ, Lee H. Imaging of adenovirus-mediated expression of human sodium iodide symporter gene by 99mTc scintigraphy in mice. Nucl Med Biol 2004;31:31–40

    Article  CAS  PubMed  Google Scholar 

  19. Lee H, Kim J, Lee B, Chang JW, Ahn J, Park JO, Choi J, Yun CO, Kim BS, Kim JH. Oncolytic potential of E1B 55 kDa-deleted YKL-1 recombinant adenovirus: correlation with p53 functional status. Int J Cancer 2000;88:454–63

    Article  CAS  PubMed  Google Scholar 

  20. Lee WW, Lee B, Kim SJ, ** J, Moon DH, Lee H. Kinetics and iodide uptake and efflux in various human thyroid cancer cells by expressing sodium iodide symporter gene via a recombinant adenovirus. Oncol Rep 2003;10:845–9

    CAS  PubMed  Google Scholar 

  21. Wu JC, Sundaresan G, Iyer M, Gambhir SS. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 2001;4:297–306

    Article  CAS  PubMed  Google Scholar 

  22. Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS. Optical imaging of cardiac reporter gene expression in living rats. Circulation 2002;105:1631–4

    Article  PubMed  Google Scholar 

  23. Inubushi M, Wu JC, Gambhir SS, Sundaresan G, Satyamurthy N, Namavari M, Yee S, Barrio JR, Stout D, Chatziioannou AF, Wu L, Schelbert HR. Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 2003;107:326–32

    Article  CAS  PubMed  Google Scholar 

  24. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S, Schlumberger M, Perricaudet M. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000;60:3484–92

    CAS  PubMed  Google Scholar 

  25. Cho JY, Shen DH, Yang W, Williams B, Buckwalter TL, La Perle KM, Hinkle G, Pozderac R, Kloos R, Nagaraja HN, Barth RF, Jhiang SM. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther 2002;9:1139–45

    Article  CAS  PubMed  Google Scholar 

  26. Mandell RB, Mandell LZ, Link CJ. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 1999;59:661–8

    CAS  PubMed  Google Scholar 

  27. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002;13:1723–35

    Article  CAS  PubMed  Google Scholar 

  28. Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 2000;60:6526–30

    CAS  PubMed  Google Scholar 

  29. Frauli M, Ribault S, Neuville P, Auge F, Calenda V. Adenoviral-mediated skeletal muscle transcriptional targeting using chimeric tissue-specific promoters. Med Sci Monit 2003;9:BR78–84

    CAS  PubMed  Google Scholar 

  30. Kozower BD, Kanaan SA, Tagawa T, Suda T, Grapperhaus K, Daddi N, Crouch EC, Doerschuk CM, Patterson GA. Intramuscular gene transfer of interleukin-10 reduces neutrophil recruitment and ameliorates lung graft ischemia-reperfusion injury. Am J Transplant 2002;2:837–42

    Article  CAS  PubMed  Google Scholar 

  31. Smith RS Jr, Lin KF, Agata J, Chao L, Chao J. Human endothelial nitric oxide synthase gene delivery promotes angiogenesis in a rat model of hindlimb ischemia. Arterioscler Thromb Vasc Biol 2002;22:1279–85

    Article  CAS  PubMed  Google Scholar 

  32. Wagner S, Aust G, Schott M, Scherbaum WA, Feldkamp J, Seissler J. Regulation of sodium-iodide-symporter gene expression in human thyrocytes measured by real-time polymerase chain reaction. Exp Clin Endocrinol Diabetes 2002;110:398–402

    Article  CAS  PubMed  Google Scholar 

  33. Cao B, Mytinger JR, Huard J. Adenovirus mediated gene transfer to skeletal muscle. Microsc Res Tech 2002;58:45–51

    Article  CAS  PubMed  Google Scholar 

  34. Engelhardt JF, Ye X, Doranz B, Wilson JM. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decrease inflammatory response in mouse liver. Proc Natl Acad Sci U S A 1994;91:6196–200

    CAS  PubMed  Google Scholar 

  35. Yu Y, Annala AJ, Barrio JR, Toyokuni T, Satyamurthy N, Namavari M, Cherry SR, Phelps ME, Herschman HR, Gambhir SS. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 2000;6:933–7

    CAS  PubMed  Google Scholar 

  36. Zinn KR, Chaudhuri TR, Krasnykh VN, Buchsbaum DJ, Belousova N, Grizzle WE, Curiel DT, Rogers BE. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice. Radiology 2002;223:417–25

    CAS  PubMed  Google Scholar 

  37. Sun X, Annala AJ, Yaghoubi SS, Barrio JR, Nguyen KN, Toyokuni T, Satyamurthy N, Namavari M, Phelps ME, Herschman HR, Gambhir SS. Quantitative imaging of gene induction in living animals. Gene Ther 2001;8:1572–9

    Article  CAS  PubMed  Google Scholar 

  38. Yaghoubi SS, Wu L, Liang Q, Toyokuni T, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther 2001;8:1072–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Sissy M. Jhiang (Department of Physiology, Ohio State University, Ohio, USA) for generously providing recombinant adenoviral-human sodium-iodide symporter gene. We also wish to thank Kyong-Rye Dong, and Joon-Hong Cheon (Department of Nuclear Medicine, Asan Medical Center, Seoul, Korea) for their skilful technical assistance in nuclear imaging. This study was supported by a grant (02-287) from the Asan Institute for Life Sciences, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Wook Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H.S., Lee, H., Kim, S.J. et al. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats. Eur J Nucl Med Mol Imaging 31, 1304–1311 (2004). https://doi.org/10.1007/s00259-004-1570-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1570-5

Keywords

Navigation