Log in

Bone and soft tissue tumors: clinicoradiologic-pathologic molecular-genetic correlation of novel fusion spindled, targetable-ovoid, giant-cell-rich, and round cell sarcomas

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Background

New entities in the classification of bone and soft tissue tumors have been identified by use of advanced molecular-genetic techniques, including next-generation sequencing. Clinicoradiologic and pathologic correlation supports diagnostic classification.

Methods

Tumors from four morphologically grouped areas are selected to enhance diagnosis and awareness among the multidisciplinary team. These include select round cell tumors, spindle cell tumors, targetable tyrosine kinase/RAS::MAPK pathway-ovoid (epithelioid to spindled) tumors, and giant-cell-rich tumors of bone and soft tissue.

Results

Round cell tumors of bone and soft tissue include prototypical Ewing sarcoma, newer sarcomas with BCOR genetic alteration and CIC-rearranged, as well as updates on FUS/EWSR1::NFATc2, an EWSR1 non-ETS tumor that is solid with additional amplified hybridization signal pattern of EWSR1. This FUS/EWSR1::NFATc2 fusion has now been observed in seemingly benign to low-grade intraosseous vascular-rich and simple (unicameral) bone cyst tumors. Select spindle cell tumors of bone and soft tissue include rhabdomyosarcoma with FUS/EWSR1::TFCP2, an intraosseous high-grade spindle cell tumor without matrix. Targetable tyrosine-kinase or RAS::MAPK pathway-tumors of bone and soft tissue include NTRK, ALK, BRAF, RAF1, RET, FGFR1, ABL1, EGFR, PDGFB, and MET with variable ovoid myopericytic to spindled pleomorphic features and reproducible clinicopathologic and radiologic clues to their diagnosis. Giant-cell-rich tumors of bone, joint, and soft tissue are now respectively characterized by H3F3A mutation, CSF1 rearrangement (targetable), and HMGA2::NCOR2 fusion.

Conclusion

This article is an update for radiologists, oncologists, surgeons, and pathologists to recognize these novel ovoid, spindled, giant-cell-rich, and round cell tumors, for optimal diagnostic classification and multidisciplinary team patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current review paper are available from cited accepted peer-reviewed journal articles and international presentations and from the corresponding author upon request.

References

  1. Ewing J. Classics in oncology. Diffuse endothelioma of bone. James Ewing. Proceedings of the New York Pathological Society, 1921. CA Cancer J Clin. 1972;22(2):95–8.

  2. Shulman DS, Whittle SB, Surdez D, et al. An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. npj Precis Onc. 2022;6:65.

    Article  CAS  Google Scholar 

  3. Angervall L, Enzinger FM. Extraskeletal neoplasm resembling Ewing’s sarcoma. Cancer. 1975;36(1):240–51.

    Article  CAS  Google Scholar 

  4. Ehrig T, Billings SD, Fanburg-Smith JC. Superficial primitive neuroectodermal tumor/Ewing sarcoma (PN/ES): same tumor as deep PN/ES or new entity? Ann Diagn Pathol. 2007;11(3):153–9.

    Article  Google Scholar 

  5. Ozdemirli M, Fanburg-Smith JC, Hartmann DP, Azumi N, Miettinen M. Differentiating lymphoblastic lymphoma and Ewing’s sarcoma: lymphocyte markers and gene rearrangement. Mod Pathol. 2001;14(11):1175–82.

    Article  CAS  Google Scholar 

  6. Cohen JN, Sabnis AJ, Krings G, Cho SJ, Horvai AE, Davis JL. EWSR1-NFATC2 gene fusion in a soft tissue tumor with epithelioid round cell morphology and abundant stroma: a case report and review of the literature. Hum Pathol. 2018;81:281–90.

    Article  CAS  Google Scholar 

  7. Perret R, Escuriol J, Velasco V, Mayeur L, Soubeyran I, Delfour C, Aubert S, Polivka M, Karanian M, Meurgey A, Le Guellec S, Weingertner N, Hoeller S, Coindre JM, Larousserie F, Pierron G, Tirode F, Le Loarer F. NFATc2-rearranged sarcomas: clinicopathologic, molecular, and cytogenetic study of 7 cases with evidence of AGGRECAN as a novel diagnostic marker. Mod Pathol. 2020;33(10):1930–44 (Epub 2020 Apr 23. Erratum in: Mod Pathol. 2020 May 15).

    Article  CAS  Google Scholar 

  8. Yau DTW, Chan JKC, Bao S, Zheng Z, Lau GTC, Chan ACL. Bone sarcoma with EWSR1-NFATC2 fusion: sarcoma with varied morphology and amplification of fusion gene distinct from ewing sarcoma. Int J Surg Pathol. 2019;27(5):561–7.

    Article  CAS  Google Scholar 

  9. Seligson ND, Maradiaga RD, Stets CM, Katzenstein HM, Millis SZ, Rogers A, Hays JL, Chen JL. Multiscale-omic assessment of EWSR1-NFATc2 fusion positive sarcomas identifies the mTOR pathway as a potential therapeutic target. NPJ Precis Oncol. 2021;5(1):43.

    Article  CAS  Google Scholar 

  10. Kao YC, Owosho AA, Sung YS, Zhang L, Fujisawa Y, Lee JC, Wexler L, Argani P, Swanson D, Dickson BC, Fletcher CDM, Antonescu CR. BCOR-CCNB3 fusion positive sarcomas: a clinicopathologic and molecular analysis of 36 cases with comparison to morphologic spectrum and clinical behavior of other round cell sarcomas. Am J Surg Pathol. 2018;42(5):604–15.

    Article  Google Scholar 

  11. Baranov E, McBride MJ, Bellizzi AM, Ligon AH, Fletcher CDM, Kadoch C, Hornick JL. A novel SS18-SSX fusion-specific antibody for the diagnosis of synovial sarcoma. Am J Surg Pathol. 2020;44(7):922–33.

    Article  Google Scholar 

  12. Antonescu CR, Owosho AA, Zhang L, Chen S, Deniz K, Huryn JM, Kao YC, Huang SC, Singer S, Tap W, Schaefer IM, Fletcher CD. Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol. 2017;41(7):941–9.

    Article  Google Scholar 

  13. Cardoen L, Tauziède-Espariat A, Dangouloff-Ros V, Moalla S, Nicolas N, Roux CJ, Bouchoucha Y, Bourdeaut F, Beccaria K, Bolle S, Pierron G, Dufour C, Doz F, Boddaert N, Brisse HJ. Imaging features with histopathologic correlation of CNS high-grade neuroepithelial tumors with a BCOR internal tandem duplication. AJNR Am J Neuroradiol. 2022;43(1):151–6.

    Article  CAS  Google Scholar 

  14. Chen T, Wang Y, Goetz L, Corey Z, Dougher MC, Smith JD, Fox EJ, Freiberg AS, Flemming D, Fanburg-Smith JC. Novel fusion sarcomas including targetable NTRK and ALK. Ann Diagn Pathol. 2021;54:151800.

    Article  Google Scholar 

  15. Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM, Antonescu CR. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51(3):207–18.

    Article  CAS  Google Scholar 

  16. Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, Gotoh T, Motoi T, Fukayama M, Aburatani H, Takizawa T, Nakamura T. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15(13):2125–37.

    Article  CAS  Google Scholar 

  17. Pižem J, Šekoranja D, Matjašič A, Zupan A, Boštjančič E, Limpel Novak KA, Salapura V, Mavčič B, Gazič B, Dimnik K. The role of molecular diagnostics in aneurysmal and simple bone cysts - a prospective analysis of 19 lesions. Virchows Arch. 2021;479(4):795–802.

    Article  Google Scholar 

  18. Pižem J, Šekoranja D, Zupan A, Boštjančič E, Matjašič A, Mavčič B, Contreras JA, Gazič B, Martinčič D, Snoj Ž, Limpel Novak KA, Salapura V. FUS-NFATC2 or EWSR1-NFATC2 fusions are present in a large proportion of simple bone cysts. Am J Surg Pathol. 2020;44(12):1623–34.

    Article  Google Scholar 

  19. Hung YP, Fisch AS, Diaz-Perez JA, Iafrate AJ, Lennerz JK, Nardi V, Bredella MA, Raskin KA, Lozano-Calderon SA, Rosenberg AE, Nielsen GP. Identification of EWSR1-NFATC2 fusion in simple bone cysts. Histopathology. 2021;78(6):849–56.

    Article  Google Scholar 

  20. Dashti NK, Dickson BC, Zhang L, **e Z, Nielsen GP, Antonescu CR. A unique epithelioid vascular neoplasm of bone characterized by EWSR1/FUS-NFATC1/2 fusions. Genes Chromosomes Cancer. 2021;60(11):762–71.

    Article  CAS  Google Scholar 

  21. Ong SLM, Lam SW, van den Akker BEWM, Kroon HM, Briaire-de Bruijn IH, Cleven AHG, Savci-Hei**k DC, Cleton-Jansen AM, Baumhoer D, Szuhai K, Bovée JVMG. Expanding the Spectrum of EWSR1-NFATC2-rearranged benign tumors: a common genomic abnormality in vascular malformation/hemangioma and simple bone cyst. Am J Surg Pathol. 2021;45(12):1669–81.

    Article  Google Scholar 

  22. Panferova A, Sinichenkova KY, Abu Jabal M, Usman N, Sharlai A, Roshchin V, Konovalov D, Druy A. EWSR1-TFCP2 in an adolescent represents an extremely rare and aggressive form of intraosseous spindle cell rhabdomyosarcomas. Cold Spring Harb Mol Case Stud. 2022;8(5):a006209.

  23. Xu B, Suurmeijer AJH, Agaram NP, Zhang L, Antonescu CR. Head and neck rhabdomyosarcoma with TFCP2 fusions and ALK overexpression: a clinicopathological and molecular analysis of 11 cases. Histopathology. 2021;79(3):347–57.

    Article  Google Scholar 

  24. Chrisinger JSA, Wehrli B, Dickson BC, Fasih S, Hirbe AC, Shultz DB, Zadeh G, Gupta AA, Demicco EG. Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases. Virchows Arch. 2020;477(5):725–32.

    Article  Google Scholar 

  25. Agaram NP, Zhang L, Sung YS, Cavalcanti MS, Torrence D, Wexler L, Francis G, Sommerville S, Swanson D, Dickson BC, Suurmeijer AJH, Williamson R, Antonescu CR. Expanding the spectrum of intraosseous rhabdomyosarcoma: correlation between 2 distinct gene fusions and phenotype. Am J Surg Pathol. 2019;43(5):695–702.

    Article  Google Scholar 

  26. Montoya-Cerrillo DM, Diaz-Perez JA, Velez-Torres JM, Montgomery EA, Rosenberg AE. Novel fusion genes in spindle cell rhabdomyosarcoma: the spectrum broadens. Genes Chromosomes Cancer. 2021;60(10):687–94.

    Article  CAS  Google Scholar 

  27. Tan SY, Al-Ibraheemi A, Ahrens WA, Oesterheld JE, Fanburg-Smith JC, Liu YJ, Spunt SL, Rudzinski ER, Coffin C, Davis JL. ALK rearrangements in infantile fibrosarcoma-like spindle cell tumours of soft tissue and kidney. Histopathology. 2022;80(4):698–707.

    Article  Google Scholar 

  28. Davis JL, Al-Ibraheemi A, Rudzinski ER, Surrey LF. Mesenchymal neoplasms with NTRK and other kinase gene alterations. Histopathology. 2022;80(1):4–18.

    Article  Google Scholar 

  29. Overfield CJ, Edgar MA, Wessell DE, Wilke BK, Garner HW. NTRK-rearranged spindle cell neoplasm of the lower extremity: radiologic-pathologic correlation. Skeletal Radiol. 2022;51(8):1707–13.

  30. Baranov E, Winsnes K, O’Brien M, Voss SD, Church AJ, Janeway KA, DuBois SG, Davis JL, Al-Ibraheemi A. Histologic characterization of paediatric mesenchymal neoplasms treated with kinase-targeted therapy. Histopathology. 2022;81(2):215–27.

    Article  Google Scholar 

  31. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O’Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15(1):95–8.

    Article  CAS  Google Scholar 

  32. Brahmi M, Lesluyes T, Dufresne A, Toulmonde M, Italiano A, Mir O, Le Cesne A, Valentin T, Chevreau C, Bonvalot S, Penel N, Coindre JM, Le Guellec S, Le Loarer F, Karanian M, Blay JY, Chibon F. Expression and prognostic significance of PDGF ligands and receptors across soft tissue sarcomas. ESMO Open. 2021;6(1):100037.

    Article  CAS  Google Scholar 

  33. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goodie V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, Myklebost O, Baumhoer D, Jundt G, Hamoudi R, Tirabosco R, Amary MF, Futreal PA, Stratton MR, Campbell PJ, Flanagan AM. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet. 2013;45(12):1479–82.

    Article  CAS  Google Scholar 

  34. Amary F, Berisha F, Ye H, Gupta M, Gutteridge A, Baumhoer D, Gibbons R, Tirabosco R, O’Donnell P, Flanagan AM. H3F3A (Histone 3.3) G34W immunohistochemistry: a reliable marker defining benign and malignant giant cell tumor of bone. Am J Surg Pathol. 2017;41(8):1059–68.

    Article  Google Scholar 

  35. Presneau N, Baumhoer D, Behjati S, Pillay N, Tarpey P, Campbell PJ, Jundt G, Hamoudi R, Wedge DC, Loo PV, Hassan AB, Khatri B, Ye H, Tirabosco R, Amary MF, Flanagan AM. Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics. J Pathol Clin Res. 2015;1(2):113–23.

    Article  CAS  Google Scholar 

  36. Baumhoer D, Amary F, Flanagan AM. An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing. Genes Chromosomes Cancer. 2019;58(2):88–99.

    Article  CAS  Google Scholar 

  37. Fittall MW, Lyskjaer I, Ellery P, Lombard P, Ijaz J, Strobl AC, Oukrif D, Tarabichi M, Sill M, Koelsche C, Mechtersheimer G, Demeulemeester J, Tirabosco R, Amary F, Campbell PJ, Pfister SM, Jones DT, Pillay N, Van Loo P, Behjati S, Flanagan AM. Drivers underpinning the malignant transformation of giant cell tumour of bone. J Pathol. 2020;252(4):433–40.

    Article  CAS  Google Scholar 

  38. Howard EL, Gregory J, Winn N, Flanagan A, Cool P. Radiological features of giant cell tumours of bone. Cureus. 2020;12(6):e8793.

    Google Scholar 

  39. Kimura A, Toda Y, Matsumoto Y, Yamamoto H, Yahiro K, Shimada E, Kanahori M, Oyama R, Fukushima S, Nakagawa M, Setsu N, Endo M, Fujiwara T, Matsunobu T, Oda Y, Nakashima Y. Nuclear β-catenin translocation plays a key role in osteoblast differentiation of giant cell tumor of bone. Sci Rep. 2022;12(1):13438.

    Article  CAS  Google Scholar 

  40. Spierenburg G, Grimison P, Chevreau C, Stacchiotti S, Piperno-Neumann S, Le Cesne A, Ferraresi V, Italiano A, Duffaud F, Penel N, Metzger S, Chabaud S, van der Heijden L, Pérol D, van de Sande MAJ, Blay JY, Gelderblom H. Long-term follow-up of nilotinib in patients with advanced tenosynovial giant cell tumours: long-term follow-up of nilotinib in TGCT. Eur J Cancer. 2022;173:219–28.

    Article  CAS  Google Scholar 

  41. Peterfy C, Chen Y, Countryman P, Chmielowski B, Anthony SP, Healey JH, Wainberg ZA, Cohn AL, Shapiro GI, Keedy VL, Singh A, Puzanov I, Wagner AJ, Qian M, Sterba M, Hsu HH, Tong-Starksen S, Tap WD. CSF1 receptor inhibition of tenosynovial giant cell tumor using novel disease-specific MRI measures of tumor burden. Future Oncol. 2022;18(12):1449–59.

    Article  CAS  Google Scholar 

  42. Murphey MD, Rhee JH, Lewis RB, Fanburg-Smith JC, Flemming DJ, Walker EA. Pigmented villonodular synovitis: radiologic-pathologic correlation. Radiographics. 2008;28(5):1493–518.

    Article  Google Scholar 

  43. Liu X, Xu H, Jiang T, Zhang B, Li Y, Zeng W. MRI and 18F-FDG PET/CT findings of a giant cell tumor of the tendon sheath of the knee joint (pigmented villonodular synovitis): a case report and literature review. Hell J Nucl Med. 2021;24(2):149–54.

    Google Scholar 

  44. Fanburg-Smith JC, Miettinen M. Malignant tenosynovial giant cell tumors (MGCTTS). Scientific expansions 1998; abstract #16, 278. Platform presentation in Nice, France, International Academy of Pathology;1998.

  45. Bertoni F, Unni KK, Beabout JW, Sim FH. Malignant giant cell tumor of the tendon sheaths and joints (malignant pigmented villonodular synovitis). Am J Surg Pathol. 1997;21(2):153–63.

    Article  CAS  Google Scholar 

  46. Nakayama R, Jagannathan JP, Ramaiya N, Ferrone ML, Raut CP, Ready JE, Hornick JL, Wagner AJ. Clinical characteristics and treatment outcomes in six cases of malignant tenosynovial giant cell tumor: initial experience of molecularly targeted therapy. BMC Cancer. 2018;18(1):1296.

    Article  Google Scholar 

  47. Agaimy A, Michal M, Stoehr R, Ferrazzi F, Fabian P, Michal M, Franchi A, Haller F, Folpe AL, Kösemehmetoğlu K. Recurrent novel HMGA2-NCOR2 fusions characterize a subset of keratin-positive giant cell-rich soft tissue tumors. Mod Pathol. 2021;34(8):1507–20.

    Article  CAS  Google Scholar 

  48. Dehner CA, Baker JC, Bell R, Dickson BC, Schmidt RE, Demicco EG, Chrisinger JSA. Xanthogranulomatous epithelial tumors and keratin-positive giant cell-rich soft tissue tumors: two aspects of a single entity with frequent HMGA2-NCOR2 fusions. Mod Pathol. 2022;35(11):1656–66.

  49. An SB, Choi JA, Chung JH, Oh JH, Kang HS. Giant cell tumor of soft tissue: a case with atypical US and MRI findings. Korean J Radiol. 2008;9(5):462–5.

    Article  Google Scholar 

Download references

Acknowledgements

This section is to acknowledge and thank all of our interdisciplinary local and international colleagues. Thanks to colleagues Dr. Donald Flemming and MSK team for excellent daily interdisciplinary discussions. Thanks to Jessica D. Smith who excels in research and scientific writing/editing skills. Appreciation goes to those colleagues who contributed information and/or provided original, previously unpublished figures for this manuscript, including Dr. Daniel Baumhoer, Dr. Roman Guggenberger, Dr. Chantal Pauli, Dr. Sinchun Hwang, Dr. Meera Hameed, Dr. Paul O’Donnell, Dr. Fernanda Amary, Dr. Carol Morris, Dr. John Gross, Dr. Mark Murphey, Dr. Fiona Bonar, Dr. Adrienne Flanagan, and Dr. Mark Kransdorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Fanburg-Smith.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Discuss clinicoradiologic features of the fine line between benign and malignant in vascular-rich and cystic round cell tumors EWSR1/FUS::NFATc2 (FET non-ETS Ewing) fusion.

• Awareness by the interdisciplinary team of new non-matrix/mineralizing high-grade spindled intraosseous rhabdomyosarcoma with EWSR1/FUS::TFCP2.

• Identify new RAS::MAPK pathway tyrosine-kinase fusion sarcomas involving NTRK, ALK, BRAF, RAF1, RET, FGFR1, ABL1, EGFR, and MET with options of targeted therapy, using clinicoradiologic and pathologic correlation.

• Update molecular classification of giant cell rich tumors of soft tissue, joint, and bone respectively involving H3F3A-mutation (K34W), CSF1 rearrangement, or HMGA2::NCOR2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanburg-Smith, J.C., Smith, J.D. & Flemming, D.J. Bone and soft tissue tumors: clinicoradiologic-pathologic molecular-genetic correlation of novel fusion spindled, targetable-ovoid, giant-cell-rich, and round cell sarcomas. Skeletal Radiol 52, 517–540 (2023). https://doi.org/10.1007/s00256-022-04244-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04244-w

Keywords

Navigation