Log in

Do essential oils from plants occurring in the Brazilian Caatinga biome present antifungal potential against dermatophytoses? A systematic review

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Caatinga is an exclusively Brazilian biome where semiarid climatic conditions promote singularities in adaptive biodiversity. Many aromatic species are found in this region possessing antifungal properties, which are attributed to their essential oils. Thus, we questioned whether essential plant oils found in the Caatinga present anti-dermatophytic potential. Dermatophytes are keratinophilic fungi that cause one of the most prevalent mycoses globally, skin infections known as dermatophytoses (tineas). Here, we provide a comprehensive report of the available published information, analyzing the methods used to evaluate the antifungal activity, verifying the quality of the evidence and possible clinical applications, and discussing research trends in this area. The plants studied concentrated in the genera Croton (Euphorbiaceae), Lippia (Verbenaceae), Piper (Piperaceae), and Mentha (Lamiaceae). All of the studies used in vitro tests to analyze antifungal potential, and little evidence was ascertained concerning the mechanism of antifungal action. In addition, the essential oils also evidenced drug modifying activity of conventional antifungal drugs (Ketoconazole and Terbinafine). We believe that the anti-dermatophyte potential of plant essential oils occurring within the Caatinga is underestimated and that this review will encourage future chemical-pharmacological investigations into the plants within this biome.

Key points

The essential oils from plants occurring in the Caatinga Biome present unknown anti-dermatophyte potential.

The studies against dermatophyte fungi concentrate on the families Lamiaceae and Verbenaceae.

In vitro assays were used to assess the anti-dermatophyte potential of the essential oils.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Almeida da Ponte I, Muthuvel M, Saravanabhavan S, Rathinaraj Benjamin S (2020) The phytochemical composition of medicinal plants: Brazilian Semi-Arid Region (Caatinga). In: Phytochemicals in Human Health. IntechOpen. https://doi.org/10.5772/intechopen.90252

  • Arendrup MC, Kahlmeter G, Guinea J, Meletiadis J (2020) How to: perform antifungal susceptibility testing of microconidia-forming dermatophytes following the new reference EUCAST method E.Def 11.0, exemplified by Trichophyton. Clin Microbiol Infect 27:55–60. https://doi.org/10.1016/j.cmi.2020.08.042

    Article  CAS  PubMed  Google Scholar 

  • Barros de SA, de Morais SM, Ferreira Vieira PATÍGP, Craveiro AA, dos Santos Fontenelle RO, de Menezes JESA, da Silva FWF, de Sousa HA (2015) Chemical composition and functional properties of essential oils from Mentha species. Ind Crops Prod 76:557–564. https://doi.org/10.1016/j.indcrop.2015.07.004

  • Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006

    Article  Google Scholar 

  • Biasi-Garbin RP, Demitto F de O, do Amaral RCR, Ferreira MRA, Soares LAL, Svidzinski TIE, Baeza LC, Yamada-Ogatta SF (2016) Antifungal potential of plant species from brazilian caatinga against dermatophytes. Rev Inst Med Trop Sao Paulo 58. https://doi.org/10.1590/S1678-9946201658018

  • Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH (2017) Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev 6. https://doi.org/10.1186/s13643-017-0644-y

  • Buroker-Kilgore M, Wang KKW (1993) A coomassie brilliant blue G-250-based colorimetric assay for measuring activity of calpain and other proteases. Anal Biochem 208:387–392. https://doi.org/10.1006/abio.1993.1066

    Article  CAS  PubMed  Google Scholar 

  • Campolo O, Giunti G, Laigle M, Michel T, Palmeri V (2020) Essential oil-based nano-emulsions: effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind Crops Prod 157:112935. https://doi.org/10.1016/j.indcrop.2020.112935

    Article  CAS  Google Scholar 

  • Cardoso GN, Silva KVS, de Lima OMI, Arrua JMM, Pereira de OF (2020) Dermatophytes develop resistance to the monoterpenes geraniol and citronellol. Rev Cuba Farm 53:1–12

  • Carmo ES, de Pereira OF, Cavalcante NM, Gayoso CW, de Lima OE (2013) Tratamento de pitiríase versicolor com aplicação tópica do óleo essencial de Cymbopogon citratus (DC) stapf-estudo terapêutico piloto. An Bras Dermatol 88:381–385. https://doi.org/10.1590/abd1806-4841.20131800

  • Cerqueira MD, Souza-Neta LC, Passos MDGVM, Lima EDO, Roque NF, Martins D, Guedes MLS, Cruz FG (2007) Seasonal variation and antimicrobial activity of Myrcia myrtifolia essential oils. J Braz Chem Soc 18:998–1003. https://doi.org/10.1590/s0103-50532007000500018

    Article  Google Scholar 

  • CLSI C& LSI (2017) M38 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd Edition

  • Costa DCM, Vermelho AB, Almeida CA, de Souza Dias EP, Lage Cedrola SM, Arrigoni-Blank M de FF, Blank AF, Alviano CS, Alviano DS, Costa DCM, Vermelho AB, Almeida CA, de Souza Dias EP, Cedrola SML, Arrigoni-Blank M de FF, Blank AF, Alviano CS, Alviano DS, DCMC, ABV, CAA, EPDSD, SMLC, MDFA-B, AFB,CSA, DSA (2014) Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes. J Enzyme Inhib Med Chem 29:12–17. https://doi.org/10.3109/14756366.2012.743537

  • Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2015) Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 5. https://doi.org/10.1101/cshperspect.a019752

  • Danielli LJ, Pippi B, Duarte JA, Maciel AJ, Lopes W, Machado MM, Oliveira LFS, Vainstein MH, Teixeira ML, Bordignon SAL, Fuentefria AM, Apel MA, LJD, BP, JAD, AJM, WL, MMM, LFSO, MHV, MLT, SALB, AMF, MAA, Danielli LJ, Pippi B, Duarte JA, Maciel AJ, Lopes W, Machado MM, Oliveira LFS, Vainstein MH, Teixeira ML, Bordignon SAL, Fuentefria AM, Apel MA (2018) Antifungal mechanism of action of Schinus lentiscifolius Marchand essential oil and its synergistic effect in vitro with terbinafine and ciclopirox against dermatophytes. J Pharm Pharmacol 70:1216–1227. https://doi.org/10.1111/jphp.12949

  • De Albuquerque UP, De Lima Araújo E, El-Deir ACA, De Lima ALA, Souto A, Bezerra BM, Ferraz EMN, Maria Xavier Freire E, Sampaio EVDSB, Las-Casas FMG, De Moura GJB, Pereira GA, De Melo JG, Alves Ramos M, Rodal MJN, Schiel N, De Lyra-Neves RM, Alves RRN, De Azevedo SM, Telino WR, Severi W (2012) Caatinga revisited: ecology and conservation of an important seasonal dry forest. Sci World J

  • de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Göker M, Rezaei-Matehkolaei A, Mirhendi H, Gräser Y (2017) Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 182:5–31. https://doi.org/10.1007/s11046-016-0073-9

    Article  PubMed  Google Scholar 

  • de Lira MK, de Oliveira PF, de Oliveira W, Lima I, de Oliveira LE (2012) Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: interaction with ergosterol. Molecules 17:14418–14433. https://doi.org/10.3390/molecules171214418

    Article  CAS  Google Scholar 

  • de Sousa BA, de Morais SM, Ferreira PAT, VieiraCraveiro ÍGPAAAA, dos Santos Fontenelle RO, de Menezes JESA, da Silva FWF, de Sousa HAA, de BarrosS A, de Morals SM, Travassos Ferreira PA, Pinto Vieira IG, Craveiro AAAA, dos Santos Fontenelle RO, de Menezes JESA, da Silva FWF, de Sousa HAA (2015) Chemical composition and functional properties of essential oils from Mentha species. Ind Crops Prod 76:557–564. https://doi.org/10.1016/j.indcrop.2015.07.004

    Article  CAS  Google Scholar 

  • de Vasconcelos Pinto Â, de Oliveira JC, de Medeiros CAC, Silva SL, de Oliveira Pereira F (2020) Potentiation of antifungal activity of terbinafine by dihydrojasmone and terpinolene against dermatophytes. Lett Appl Microbiol. https://doi.org/10.1111/lam.13371

  • Flores FC, Beck RCR, de B da Silva C (2016) Essential oils for treatment for onychomycosis: a mini-review. Mycopathologia 181:9–15. https://doi.org/10.1007/s11046-015-9957-3

    Article  CAS  PubMed  Google Scholar 

  • Fontenelle ROS, Morais SM, Brito EHS, Brilhante RSN, Cordeiro RA, Nascimento NRF, Kerntopf MR, Sidrim JJC, Rocha MFG (2008) Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J Appl Microbiol 104:1383–1390. https://doi.org/10.1111/j.1365-2672.2007.03707.x

    Article  CAS  PubMed  Google Scholar 

  • Fontenelle ROS, Morais SM, Brito EHS, Kerntopf MR, Brilhante RSN, Cordeiro RA, Tomé AR, Queiroz MGR, Nascimento NRF, Sidrim JJC, Rocha MFG (2007) Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother 59:934–940. https://doi.org/10.1093/jac/dkm066

    Article  CAS  PubMed  Google Scholar 

  • Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF (2018) Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol 66:2–13

    Article  CAS  Google Scholar 

  • Furtado FB, Borges BC, Teixeira TL, Garces HG, De Almeida Junior LD, Alves FCB, Da Silva CV, Fernandes Junior A (2018) Chemical composition and bioactivity of essential oil from Blepharocalyx salicifolius. Int J Mol Sci 19. https://doi.org/10.3390/ijms19010033

  • Gnat S, Łagowski D, Nowakiewicz A, Zięba P (2019) The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolates. Mycoses 62:274–283. https://doi.org/10.1111/myc.12876

    Article  CAS  PubMed  Google Scholar 

  • Guerrini A, Sacchetti G, Rossi D, Paganetto G, Muzzoli M, Andreotti E, Tognolini M, Maldonado ME, Bruni R (2009) Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) essential oils from Eastern Ecuador. Environ Toxicol Pharmacol 27:39–48. https://doi.org/10.1016/j.etap.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Foley KA (2019) Evidence for biofilms in onychomycosis. G Ital Di Dermatologia e Venereol 154:50–55

    Google Scholar 

  • Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, Debeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schünemann HJ (2011) GRADE guidelines: 1. Introduction - GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026

    Article  PubMed  Google Scholar 

  • Hazen KC (1998) Fungicidal versus fungistatic activity of terbinafine and itraconazole: an in vitro comparison. J Am Acad Dermatol 38. https://doi.org/10.1016/s0190-9622(98)70482-7

  • Houël E, Gonzalez G, Bessière J-M, Odonne G, Eparvier V, Deharo E, Stien D (2015) Therapeutic switching: from antidermatophytic essential oils to new leishmanicidal products. Mem Inst Oswaldo Cruz 110:106–113. https://doi.org/10.1590/0074-02760140332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Peng Y, Zhang Y, Li R, Wan Z, Wang X (2019) Deep dermatophytosis caused by Trichophyton rubrum. Lancet Infect Dis 19:1380. https://doi.org/10.1016/S1473-3099(19)30551-1

    Article  PubMed  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística I (2020) BDIA - Banco de Dados de Informações Ambientais. In: Banco Dados Informações Ambient. https://bdiaweb.ibge.gov.br/#/consulta/pesquisa. Accessed 10 Nov 2020

  • Jugreet BS, Suroowan S, Rengasamy RRK, Mahomoodally MF (2020) Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci Technol 101:89–105. https://doi.org/10.1016/j.tifs.2020.04.025

    Article  CAS  Google Scholar 

  • Khurana A, Sardana K, Chowdhary A (2019) Antifungal resistance in dermatophytes: recent trends and therapeutic implications. Fungal Genet. Biol. 132:103255

  • Lopes AI, Tavaria FK, Pintado ME (2020) Conventional and natural compounds for the treatment of dermatophytosis. Med Mycol 58:707–720. https://doi.org/10.1093/mmy/myz116

    Article  CAS  PubMed  Google Scholar 

  • Lopes G, Pinto E, Salgueiro L (2017) Natural products: an alternative to conventional therapy for dermatophytosis? Mycopathologia 182:143–167. https://doi.org/10.1007/s11046-016-0081-9

    Article  CAS  PubMed  Google Scholar 

  • Maciel AJ, Lacerda CP, Danielli LJ, Bordignon SAL, Fuentefria AM, Apel MA (2019) Antichemotactic and antifungal action of the essential oils from Cryptocarya aschersoniana , Schinus terebinthifolia , and Cinnamomum amoenum. Chem Biodivers 16. https://doi.org/10.1002/cbdv.201900204

  • Markantonatou AM, Samaras K, Zachrou E, Vyzantiadis TA (2020) Comparison of four methods for the in vitro susceptibility testing of dermatophytes. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.01593

  • Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes E V., Quaresemin NR, Martins MP, Lopes L, Rossi A (2018) Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front. Microbiol. 9

  • Melo JO, Bitencourt TA, Fachin AL, Cruz EMO, de Jesus HCR, Alves PB, de Fátima A-B, de Castro FS, Beleboni RO, Fernandes RPM, Blank AF, Scher R (2013) Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Trop 128:110–115. https://doi.org/10.1016/j.actatropica.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  • Nascimento SA, Araújo EA, Da Silva JM, Ramos CS (2015) Chemical study and antimicrobial activities of Piper arboreum (Piperaceae). J Chil Chem Soc 60:2837–2839. https://doi.org/10.4067/S0717-97072015000100013

    Article  CAS  Google Scholar 

  • Nazzaro F, Fratianni F, Coppola R, De Feo V (2017) Essential Oils and Antifungal Activity Pharmaceuticals 10:86

    Google Scholar 

  • Ngo-Mback MNL, Babii C, Jazet Dongmo PM, Kouipou Toghueo MR, Stefan M, Fekam Boyom F (2020) Anticandidal and synergistic effect of essential oil fractions from three aromatic plants used in Cameroon. J Mycol Med. https://doi.org/10.1016/j.mycmed.2020.100940

    Article  PubMed  Google Scholar 

  • Nweze EI, Mukherjee PK, Ghannoum MA (2010) Agar-based disk diffusion assay for susceptibility testing of dermatophytes. J Clin Microbiol 48:3750–3752. https://doi.org/10.1128/JCM.01357-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyegue MA, Ndoyé-Foe FM, Riwom Essama S, Hockmeni TC, Etoa F-X, Menut C (2014) Chemical composition of essential oils of Eugenia caryophylla and Mentha SP CF piperita and their in vitro antifungal activities on six human pathogenic fungi. African J Tradit Complement Altern Med 11:40–46. https://doi.org/10.4314/ajtcam.v11i6.3

    Article  Google Scholar 

  • Oliveira JC, Vasconcelos Pinto Â, Medeiros CAC, Ponte HAS, de Pereira F, O, (2020) The sensitivity modifying activity of Nerolidol and α-Bisabolol against Trichophyton spp. Indian J Microbiol 60:505–510. https://doi.org/10.1007/s12088-020-00895-2

    Article  CAS  PubMed  Google Scholar 

  • Pavan LMC, Rêgo DF, Elias ST, De Luca CG, Guerra ENS (2015) In vitro anti-tumor effects of statins on head and neck squamous cell carcinoma: a systematic review. PLoS ONE 10:e0130476. https://doi.org/10.1371/journal.pone.0130476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pemovska T, Bigenzahn JW, Superti-Furga G (2018) Recent advances in combinatorial drug screening and synergy scoring. Curr Opin Pharmacol 42:102–110

    Article  CAS  Google Scholar 

  • Pereira EJP, do vale JP, da Silva PT, dos R Lima J, Alves DR, Costa PS, Soares Rodrigues TH, de Menezes JE, de Morais SM, Bandeira PN, Fontenelle ROS, Santos HS (2018) Circadian rhythm, and antimicrobial and anticholinesterase activities of essential oils from Vitex gardneriana. Nat Prod Commun 13:635–638

  • Pereira F de O (2021) A review of recent research on antifungal agents against dermatophyte biofilms. Med Mycol 59:313–326. https://doi.org/10.1093/mmy/myaa114

  • Pereira F de O, Gomes SM, Silva SL da, Teixeira AP de C, Lima IO (2021) The prevalence of dermatophytoses in Brazil: a systematic review. J Med Microbiol 70. https://doi.org/10.1099/jmm.0.001321

  • Ponte HAS, Lima MIDO, Lima EDO, Pereira FDO (2020) Linalool modulates dermatophyte susceptibility to azole drugs. Med Mycol 58:272–274. https://doi.org/10.1093/mmy/myz041

    Article  CAS  PubMed  Google Scholar 

  • Roberts AG, Gibbs ME (2018) Mechanisms and the clinical relevance of complex drug–drug interactions. Clin Pharmacol Adv Appl 10:123–134

    CAS  Google Scholar 

  • Rouzaud C, Lanternier F, Puel A (2017) Primary immunodeficiencies and dermatophytosis. In: Springer C (ed) Immunogenetics of fungal diseases. Springer International Publishing, pp 121–133. https://doi.org/10.1007/978-3-319-50842-9_5

  • Samber N, Khan A, Varma A, Manzoor N (2015) Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm Biol 53:1496–1504. https://doi.org/10.3109/13880209.2014.989623

    Article  CAS  PubMed  Google Scholar 

  • Santos DA, Barros MES, Hamdan JS (2006) Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J Clin Microbiol 44:98–101. https://doi.org/10.1128/JCM.44.1.98-101.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos S Silva Ramos FMA, N Hanazaki, de Albuquerque UP (2011) Dynamics of traditional knowledge of medicinal plants in a rural community in the Brazilian semi-arid region. Brazilian J Pharmacogn 21:382–391. https://doi.org/10.1590/S0102-695X2011005000054

    Article  Google Scholar 

  • Silva FDS, Landell MF, Paulino GVB, Coutinho HDM, Albuquerque UP (2020) Antifungal activity of selected plant extracts based on an ethnodirected study. Acta Bot Brasilica 34:442–448. https://doi.org/10.1590/0102-33062020abb0003

    Article  Google Scholar 

  • Silva MRR, Oliveira JG, Fernandes OFL, Passos XS, Costa CR, Souza LKH, Lemos JA, Paula JR (2005) Antifungal activity of Ocimum gratissimum towards dermatophytes. Mycoses 48:172–175. https://doi.org/10.1111/j.1439-0507.2005.01100.x

    Article  CAS  PubMed  Google Scholar 

  • Siyum ZG (2020) Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives. Ecol Process 9:25

    Article  Google Scholar 

  • Sobrinho ACN, de Morais SM, de Souza EB, Albuquerque MRJR, dos Santos HS, de Paula Cavalcante CS, de Sousa HA, dos Santos Fontenelle RO (2020) Antifungal and antioxidant activities of Vernonia Chalybaea Mart. ex DC. essential oil and their major constituent β-caryophyllene. Brazilian Arch Biol Technol 63:2020 . https://doi.org/10.1590/1678-4324-2020190177

  • Sobrinho ACN, de Souza EB, Rocha MFG, Albuquerque MRJR, Bandeira PN, dos Santos HS, de Paula Cavalcante CS, Oliveira SS, Aragão PR, de Morais SM, dos Santos Fontenelle RO (2016) Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Ind Crops Prod 84:108–115. https://doi.org/10.1016/j.indcrop.2016.01.051

    Article  CAS  Google Scholar 

  • Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-based Complement Altern Med 2016. https://doi.org/10.1155/2016/3012462

  • Tangarife-Castaño V, Roa-Linares V, Betancur-Galvis LA, Durán García DC, Stashenko E, Mesa-Arango AC (2012) Antifungal activity of Verbenaceae and Labiatae families essential oils. Pharmacologyonline 1:133–145

    Google Scholar 

  • Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2:105–113. https://doi.org/10.1016/j.jarmap.2015.09.002

    Article  Google Scholar 

  • Wiederhold NP (2018) The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents 51:333–339. https://doi.org/10.1016/j.ijantimicag.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  • Zhan P, Liu W (2017) The changing face of dermatophytic infections worldwide. Mycopathologia 182:77–86. https://doi.org/10.1007/s11046-016-0082-8

    Article  PubMed  Google Scholar 

  • (2020) Flora do Brasil 2020 em construção. In: Jard. Botânico do Rio Janeiro

  • Plants of the World Online. http://www.plantsoftheworldonline.org/. Accessed 20 Oct 2020a

  • Tropicos.org. Missouri Botanical Garden. https://www.tropicos.org. Accessed 20 Oct 2020b

Download references

Acknowledgements

The authors thank David Peter Harding for reviewing the English, and Michelle Jacob for exchanging ideas during the construction of the search strategy.

Author information

Authors and Affiliations

Authors

Contributions

Design of the study: FOP; Data collection, drafting, and critical revision of the manuscript: FOP, FDM, and APCT.

Corresponding author

Correspondence to Fillipe de Oliveira Pereira.

Ethics declarations

Ethics approval

In compliance with Brazilian law requirements, we also registered this research with the Genetic Heritage Management Council (SisGen, in Portuguese) under number AF819D2.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, F.d., Teixeira, A.P.d. & de Medeiros, F.D. Do essential oils from plants occurring in the Brazilian Caatinga biome present antifungal potential against dermatophytoses? A systematic review. Appl Microbiol Biotechnol 105, 6559–6578 (2021). https://doi.org/10.1007/s00253-021-11530-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11530-5

Keywords

Navigation