Log in

The role of protein hydrolysates in prolonging viability and enhancing antibody production of CHO cells

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Four independent mAb-producing CHO cell lines were grown in media supplemented with one of seven protein hydrolysates of animal and plant origin. This generated a 7x4 matrix of replicate cultures which was analysed for viable cell density and mAb productivity. In all cultures, a consistent growth rate was shown in batch culture up to 4 to 5 days. Differences between cultures appeared in the decline phase which was followed up to 7 days beyond the start of the cultures. There was a marginal but significant overall increase (x1.1) in the integral viable cell density (IVCD) in the presence of hydrolysate but a more substantial increase in the cell-specific mAb (qMab) productivity (x1.5). There were individual differences between hydrolysates in terms of enhancement of mAb productivity, the highest being a 166% increase of mAb titre (to 117 mg/L) in batch cultures of CHO-EG2 supplemented with UPcotton hydrolysate. The effect of one of the most active hydrolysates (HP7504) on antibody glycosylation was investigated. This showed no change in the predominant seven glycans produced but a significant increase in the galactosylation and sialylation of some but not all the antibodies. Overall, the animal hydrolysate, Primatone and two cotton-derived hydrolysates provided the most substantial benefit for enhanced productivity. The cotton-based hydrolysates can be viewed as valuable supplements for animal-derived component-free (ADCF) media and as a source for the investigation of chemically defined bioactive components.

Key points

• Protein hydrolysates enhanced both IVCD & qMab; the effect on qMab being consistently greater.

• Cotton-based hydrolysates showed high bioactivity and potential for use in serum-free media.

• Enhanced galactosylation and sialylation was shown for some of the Mabs tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Glycan structures were validated by reference to the Glycostore database (www.glycostore.org).

References

  • Agrawal V, Slivac I, Perret S, Bisson L, St-Laurent G, Murad Y, Zhang J, Durocher Y (2012) Stable expression of chimeric heavy chain antibodies in CHO cells Single Domain Antibodies (pp. 287-303): Springer.

  • Ballez JS, Mols J, Burteau C, Agathos SN, Schneider Y-J (2004) Plant protein hydrolysates support CHO-320 cells proliferation and recombinant IFN-γ production in suspension and inside microcarriers in protein-free media. Cytotechnology 44(3):103–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauman E, Granja PL, Barrias CC (2018) Fetal bovine serum-free culture of endothelial progenitor cells—progress and challenges. J Tissue Eng Regen Med 12(7):1567–1578

    Article  CAS  PubMed  Google Scholar 

  • Bell A, Wang ZJ, Arbabi-Ghahroudi M, Chang TA, Durocher Y, Trojahn U, Baardsnes J, Jaramillo ML, Li S, Baral TN, O’Connor-Mccourt M, Mackenzie R, Zhang J (2010) Differential tumor-targeting abilities of three single-domain antibody formats. Cancer Lett 289(1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Bhat Z, Kumar S, Bhat HF (2015) Bioactive peptides of animal origin: a review. J Food Sci Technol 52(9):5377–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 50(3):299–318

    Article  CAS  PubMed  Google Scholar 

  • Burteau CC, Verhoeye FR, Molsl JF, Ballez J-S, Agatho SN, Schneider Y-J (2003) Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon-γ-producing CHO cell line. Vitro Cell Dev Biol-Anim 39(7):291–296

    Article  CAS  Google Scholar 

  • Butler M (2004) Animal cell culture and technology: Taylor & Francis.

  • Butler M (2013) Serum-free media: standardizing cell culture system. Pharm Bioproces 1(4):315–318

    Article  Google Scholar 

  • Butler M (2015) Serum and protein free media Animal cell culture (pp. 223-236): Springer.

  • Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96(4):885–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalamaiah M, Yu W, Wu J (2018) Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 245:205–222

    Article  CAS  PubMed  Google Scholar 

  • Chida Y, Takagi K, Terada S (2013) Establishment of a mammalian cell line suitable for industrial production of recombinant protein using mutations induced by high-energy beam radiation. Cytotechnology 65(6):955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chusainow J, Yang YS, Yeo JHM, Toh PC, Asvadi P, Wong NSC, Yap MGS (2009) A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnol Bioeng 102(4):1182–1196

    Article  CAS  PubMed  Google Scholar 

  • Davami F, Baldi L, Rajendra Y, Wurm F (2014) Peptone Supplementation of Culture Medium Has Variable Effects on the Productivity of CHO Cells. Int J Mol Cell Med 3(3):146–156

    PubMed  PubMed Central  Google Scholar 

  • Dimasi L (2011) Meeting increased demands on cell-based processes by using defined media supplements. Bioprocess J 9(8):9

    Google Scholar 

  • Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Holy X (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205(2):228–236

    Article  CAS  PubMed  Google Scholar 

  • Doyle C, Butler M (1990) The effect of pH on the toxicity of ammonia to a murine hybridoma. J Biotechnol 15(1-2):91–100

    Article  CAS  PubMed  Google Scholar 

  • Essers R, Kewes H, Schiedner G (2011) Improving volumetric productivity of a stable human CAP cell line by bioprocess optimization. BMC Proc 5(Suppl 8):–P66

  • Franek F (2010) Oligopeptides as External Molecular Signals Affecting Growth and Death in Animal Cell Cultures. In: Pasupuleti VK, Demain AL (eds) Protein Hydrolysates in Biotechnology. Springer Netherlands, Dordrecht, pp 79–89

    Google Scholar 

  • Fu T, Zhang C, **g Y, Jiang C, Li Z, Wang S, Ma K, Zhang D, Hou S, Dai J, Kou G, Wang H (2016) Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells. Appl Microbiol Biotechnol 100(11):5007–5016

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa S, Romin Y, Barlas A, Petrovic LM, Turkekul M, Fan N, Xu K, Garcia AR, Monette S, Klimstra DS, Erinjeri JP, Solomon SB, Manova-Todorova K, Sofocleous CT (2014) Evaluation of YO-PRO-1 as an early marker of apoptosis following radiofrequency ablation of colon cancer liver metastases. Cytotechnology 66(2):259–273

    Article  CAS  PubMed  Google Scholar 

  • Gagnon M, Hille G, Luan YT, Kittredge A, DeFelice J, Drapeau D (2011) High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108(6):1328–1337

    Article  CAS  PubMed  Google Scholar 

  • Galanakis C M (2019) Proteins: Sustainable source, processing and applications: Academic Press.

  • Ganglberger P, Obermüller B, Kainer M, Hinterleitner P, Doblhoff O, Landauer K (2007) Optimization of culture medium with the use of protein hydrolysates Cell technology for cell products (pp. 553-557): Springer.

  • Girón-Calle J, Vioque J, Pedroche J, Alaiz M, Yust MM, Megías C, Millán F (2008) Chickpea protein hydrolysate as a substitute for serum in cell culture. Cytotechnology 57(3):263–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Baraniak PR, Copland IB, Nerem RM, McDevitt TC (2013) Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro. Cytotherapy 15(12):1469–1483

    Article  CAS  PubMed  Google Scholar 

  • Gstraunthaler G, Lindl T, van der Valk J (2013) A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 65(5):791–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu X, **e L, Harmon BJ, Wang DI (1997) Influence of Primatone RL supplementation on sialylation of recombinant human interferon-γ produced by Chinese hamster ovary cell culture using serum-free media. Biotechnol Bioeng 56(4):353–360

    Article  CAS  PubMed  Google Scholar 

  • Gupta AJ, Gruppen H, Maes D, Boots JW, Wierenga PA (2013) Factors causing compositional changes in soy protein hydrolysates and effects on cell culture functionality. J Agric Food Chem 61(45):10613–10625

    Article  CAS  PubMed  Google Scholar 

  • Hartley F, Walker T, Chung V, Morten K (2018) Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnol Bioeng 115(8):1890–1903

    Article  CAS  PubMed  Google Scholar 

  • Heidemann R, Zhang C, Qi H, Rule JL, Rozales C, Park S, Chuppa S, Ray M, Michaels J, Konstantinov K (2000) The use of peptones as medium additives for the production of a recombinant therapeutic protein in high density perfusion cultures of mammalian cells. Cytotechnology 32(2):157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Wu Z, Dai Z, Wang G, Wu G (2017) Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J Anim Sci Biotechnol 8:24–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagschies G, Lindskog E, Lacki K, Galliher P M (2018) Biopharmaceutical Processing: Development, Design, and Implementation of Manufacturing Processes: Elsevier.

  • Jayme DW, Smith SR (2000) Media formulation options and manufacturing process controls to safeguard against introduction of animal origin contaminants in animal cell culture. Cytotechnology 33(1-3):27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Horwitz AA, Wright C, Tai A, Znameroski EA, Tsegaye Y, Warbington H, Bower BS, Alves C, Co C, Jonnalagadda K, Platt D, Walter JM, Natarajan V, Ubersax JA, Cherry JR, Love JC (2019) Challenging the workhorse: Comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng 116(6):1449–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim NS, Lee GM (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95(3):237–248

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Lee GM (2009) Development of serum-free medium supplemented with hydrolysates for the production of therapeutic antibodies in CHO cell cultures using design of experiments. Appl Microbiol Biotechnol 83(4):639–648

    Article  CAS  PubMed  Google Scholar 

  • Landauer K (2014) Designing media for animal cell culture: CHO cells, the industrial standard. Methods Mol Biol 1104:89–103

    Article  CAS  PubMed  Google Scholar 

  • Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, **e M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31(8):759–765

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. mAbs 2(5):466–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Lingg N, Zhang P, Song Z, Bardor M (2012) The sweet tooth of biopharmaceuticals: importance of recombinant protein glycosylation analysis. Biotechnol J 7(12):1462–1472

    Article  CAS  PubMed  Google Scholar 

  • Liste-Calleja L, Lecina M, Lopez-Repullo J, Albiol J, Solà C, Cairó JJ (2015) Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures. Appl Microbiol Biotechnol 99(23):9951–9960

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Spearman M, Doering J, Lattova E, Perreault H, Butler M (2014) The availability of glucose to CHO cells affects the intracellular lipidlinked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 170:17–2

  • Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012) Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng 109(1):146–156

    Article  CAS  PubMed  Google Scholar 

  • Mosser M, Chevalot I, Olmos E, Blanchard F, Kapel R, Oriol E, Marc I, Marc A (2013) Combination of yeast hydrolysates to improve CHO cell growth and IgG production. Cytotechnology 65(4):629–641

    Article  CAS  PubMed  Google Scholar 

  • Mullick A, Xu Y, Warren R, Koutroumanis M, Guilbault C, Broussau S, Malenfant F, Bourget L, Lamoureux L, Lo R, Caron AW, Pilotte A, Massie B (2006) The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol 6(1):43

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulukutla BC, Gramer M, Hu WS (2012) On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab Eng 14(2):138–149

    Article  CAS  PubMed  Google Scholar 

  • Nagodawithana TW, Nelles L, Trivedi NB (2008) Protein hydrolysates as hypoallergenic, flavors and palatants for companion animals Protein Hydrolysates in Biotechnology (pp. 191-207): Springer.

  • O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, **e Y, Butler M (2020) Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv 43:107552

    Article  PubMed  Google Scholar 

  • Obaidi I, Higgins M, Bahar B, Davis JL, McMorrow T (2018) Identification of the Multifaceted Chemopreventive Activity of Curcumin Against the Carcinogenic Potential of the Food Additive, KBrO3. Curr Pharm Des 24(5):595–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Lee J-S, Baek H-H, Lee HG (2010) Purification and characterization of antioxidant peptides from soy protein hydrolysate. J Food Biochem 34(s1):120–132

    Article  Google Scholar 

  • Patterson MK Jr (1979) Measurement of growth and viability of cells in culture. Methods Enzymol 58:141–152

    Article  PubMed  Google Scholar 

  • Poulain A, Perret S, Malenfant F, Mullick A, Massie B, Durocher Y (2017) Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. J Biotechnol 255:16–27

    Article  CAS  PubMed  Google Scholar 

  • Pristovšek N, Hansen HG, Sergeeva D, Borth N, Lee GM, Andersen MR, Kildegaard HF (2018) Using titer and titer normalized to confluence are complementary strategies for obtaining Chinese Hamster ovary cell lines with high volumetric productivity of etanercept. Biotechnol J 13(3):1700216

    Article  Google Scholar 

  • Renard JM, Spagnoli R, Mazier C, Salles MF, Mandine E (1988) Evidence that monoclonal antibody production kinetics is related to the integral of the viable cells curve in batch systems. Biotechnol Lett 10(2):91–96

    Article  Google Scholar 

  • Ritacco FV, Wu Y, Kheta A (2018) Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog 34(6):1407–1426

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog 21(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Rourou S, van der Ark A, van der Velden T, Kallel H (2009) Development of an animal-component free medium for vero cells culture. Biotechnol Prog 25(6):1752–1761

    CAS  PubMed  Google Scholar 

  • Ryu JS, Kim TK, Chung JY, Lee GM (2000) Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant chinese hamster ovary cell cultures differs among cell lines. Biotechnol Bioeng 70(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Schlaeger EJ (1996) The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol Methods 194(2):191–199

    Article  CAS  PubMed  Google Scholar 

  • Siemensma A, Babcock J, Wilcox C, Huttinga H (2010) Towards an Understanding of How Protein Hydrolysates Stimulate More Efficient Biosynthesis in Cultured Cells. In: Pasupuleti VK, Demain AL (eds) Protein Hydrolysates in Biotechnology. Springer Netherlands, Dordrecht, pp 33–54

    Google Scholar 

  • Slade PG, Caspary RG, Nargund S, Huang CJ (2016) Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation. Biotechnol Bioeng 113(7):1468–1480

    Article  CAS  PubMed  Google Scholar 

  • Spearman M, Chan S, Jung V, Kowbel V, Mendoza M, Miranda V, Butler M (2016) Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells. J Biotechnol 233:129–142

    Article  CAS  PubMed  Google Scholar 

  • Spearman M, Lodewyks C, Richmond M, Butler M (2014) The bioactivity and fractionation of peptide hydrolysates in cultures of CHO cells. Biotechnol Prog 30(3):584–593

    Article  CAS  PubMed  Google Scholar 

  • Sung YH, Lim SW, Chung JY, Lee G-M (2004) Yeast hydrolysate as a low-cost additive to serum-free medium for the production of human thrombopoietin in suspension cultures of Chinese hamster ovary cells. Appl Microbiol Biotechnol 63(5):527–536

    Article  CAS  PubMed  Google Scholar 

  • Toussaint C, Henry O, Durocher Y (2016) Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. J Biotechnol 217:122–131

    Article  CAS  PubMed  Google Scholar 

  • Urbano P, Urbano F (2007) Nanobacteria: facts or fancies? PLoS Pathog 3(5):e55

    Article  PubMed  PubMed Central  Google Scholar 

  • Usta SN, Scharer CD, Xu J, Frey TK, Nash RJ (2014) Chemically defined serum-free and xeno-free media for multiple cell lineages. Ann Transl Med 2(10):97

    PubMed  PubMed Central  Google Scholar 

  • Villacrés C, Tayi VS, Lattová E, Perreault H, Butler M (2015) Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell culture. Biotechnol J 10(7):1051–1066

    Article  PubMed  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Yao T, Asayama Y (2017) Animal-cell culture media: History, characteristics, and current issues. Reprod Med Biol 16(2):99–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu X, Bell A, To R, Baral TN, Azizi A, Li J, Cass B, Durocher Y (2009) Transient expression and purification of chimeric heavy chain antibodies. Protein Expr Purif 65(1):77–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by an Enterprise Ireland, Innovation Partnership Project grant IP-2018-0717 in conjunction with the Kerry Group. We thank Kyle Liu and Hans Huttinga of Kerry for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IO designed and conducted the experiments as well as writing the manuscript. AQ designed and conducted the experiments. LMM performed glycan analysis of the Mabs. MB conceived the research and edited and approved the manuscript.

Corresponding author

Correspondence to Michael Butler.

Ethics declarations

The article does not contain any studies with human participants or animals by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaidi, I., Mota, L.M., Quigley, A. et al. The role of protein hydrolysates in prolonging viability and enhancing antibody production of CHO cells. Appl Microbiol Biotechnol 105, 3115–3129 (2021). https://doi.org/10.1007/s00253-021-11244-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11244-8

Keywords

Navigation