Log in

Ensiling sorghum with unsalable pumpkin improves feed digestibility with minimal influence on the rumen microbial population using the rumen simulation technique

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to determine the influence of sorghum ensiled with unsalable pumpkin at 20 or 40% dry matter (DM) basis on rumen fermentation characteristics and rumen microbial communities using the rumen simulation technique (RUSITEC). The experiment used a completely randomised design including silages comprising (1) 100% sorghum; (2) 80% sorghum + 20% DM pumpkin; or (3) 60% sorghum + 40% DM pumpkin. Each RUSITEC run (n = 2) was 15 d long, including 6 d of adaptation and 9 d of sampling. Dry matter digestibility (DMD) was measured on d 8 and 10–13. Gas production was measured daily, whereas methane and volatile fatty acids (VFA) production were measured from d 7–15. Solid-associated microbes (SAM) were collected on d 5, 10 and 15, whereas liquid-associated microbes (LAM) were collected after 15-d incubation. The V4 region of the 16S rRNA gene and the ITS1 region were sequenced to identify archaeal, bacterial and fungal communities. Ensiling 40% DM pumpkin with sorghum increased DMD and decreased the ratio of acetate to propionate (P ≤ 0.01). Both bacterial SAM and LAM communities were dominated by Megasphaera, and had the highest relative abundance (P = 0.03) with 40% DM pumpkin after 5 d incubation in the SAM community, while species of the Aspergillus genus dominated fungal SAM and LAM communities with 20 or 40% DM unsalable pumpkin. Therefore, ensiling up to 40% DM unsalable pumpkin with sorghum produces a high-quality ruminant feed with minimal influence on the rumen microbial population.

Key points

• Including 40% DM unsalable pumpkin decreased acetate:propionate

• Ensiling unsalable pumpkin with sorghum increases digestibility in a RUSITEC

• Rumen microbial communities were slightly influenced by unsalable pumpkin inclusion

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The 16S rRNA and ITS1 gene sequences are available through NCBI sequence read archive under BioProject accession number PRJNA560972

Code availability

Not applicable

References

  • Abbeddou S, Riwahi S, Iñiguez L, Zaklouta M, Hess HD, Kreuzer M (2011) Ruminal degradability, digestibility, energy content, and influence on nitrogen turnover of various Mediterranean by-products in fat-tailed Awassi sheep. Anim Feed Sci Technol 163(2):99–110. https://doi.org/10.1016/j.anifeedsci.2010.10.011

    Article  CAS  Google Scholar 

  • Akin DE, Borneman WS (1990) Role of rumen fungi in fiber degradation. J Dairy Sci 73(10):3023–3032

    Article  CAS  Google Scholar 

  • AlZahal O, Li F, Walker ND, McBride BW (2017) Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast. J Dairy Sci 100(6):4377–4393

    Article  CAS  Google Scholar 

  • Astoreca AL, Emateguy LG, Alconada TM (2019) Fungal contamination and mycotoxins associated with sorghum crop: its relevance today. Eur J Plant Pathol 155(2):381–392. https://doi.org/10.1007/s10658-019-01797-w

    Article  CAS  Google Scholar 

  • Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ (2012) Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr 142(9):1684–1692

    Article  CAS  Google Scholar 

  • Beta T, Chisi M, Monyo ES (2004) Sorghum | Harvest, storage, and transport. Encyclopedia of Grain Science. Elsevier, Oxford

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

    Article  CAS  Google Scholar 

  • Coppock RW, Christian RG, Jacobsen BJ (2018) Chapter 69 - Aflatoxins. In: Gupta RC (ed) Veterinary toxicology, 3rd edn. Academic Press, London, pp 983–994

    Google Scholar 

  • Counotte G, Prins R, Janssen R, DeBie MJA (1981) Role of Megasphaera elsdenii in the fermentation of DL-[2-13C] lactate in the rumen of dairy cattle. Am Soc Microbiol 42(4):649–655

    CAS  Google Scholar 

  • Counotte GHM, Lankhorst A, Prins RA (1983) Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. J Anim Sci 56(5):1222–1235. https://doi.org/10.2527/jas1983.5651222x

    Article  CAS  PubMed  Google Scholar 

  • Craig WM, Broderick GA, Ricker DB (1987) Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J Nutr 117(1):56–62. https://doi.org/10.1093/jn/117.1.56

    Article  CAS  PubMed  Google Scholar 

  • Crosby-Galván MM, Espinoza-Velasco B, Ramirez-Mella M (2018) Effect of chihua pumpkin residue (Cucurbita argyrosperma) in ruminal gas production and digestibility in vitro. Pak J Zool 50(3)

  • Desjardins P, Conklin D (2010) NanoDrop microvolume quantitation of nucleic acids. J Vis Exp 45:e2565. https://doi.org/10.3791/2565

    Article  CAS  Google Scholar 

  • Duarte AC, Holman DB, Alexander TW, Durmic Z, Vercoe PE, Chaves AV (2017) The type of forage substrate preparation included as substrate in a RUSITEC system affects the ruminal microbiota and fermentation characteristics. Front Microbiol 8:704

    Article  Google Scholar 

  • Enishi O, Yoshioka T, Nakashima K, Saeki M, Kawashima (2004) Analysis of in situ ruminal digestive characteristics and nutritive value of pumpkin and carrot juice residue for ruminant feeds. J Jpn Soc Grassl Sci 50:360–365

    CAS  Google Scholar 

  • Forwood DL, Hooker K, Caro E, Huo Y, Holman DB, Meale SJ, Chaves AV (2019) Crop sorghum ensiled with unsalable vegetables increases silage microbial diversity. Front Microbiol 10:2599. https://doi.org/10.3389/fmicb.2019.02599

    Article  PubMed  PubMed Central  Google Scholar 

  • Forwood DL, Bryce EK, Caro E, Holman DB, Meale SJ, Chaves AV (2020) Influence of probiotics on biofilm formation and diversity of bacteria colonising crop sorghum ensiled with unsalable vegetables. Appl Microbiol Biotechnol 104(20):8825–8836. https://doi.org/10.1007/s00253-020-10877-5

    Article  CAS  PubMed  Google Scholar 

  • Gleason CB, White RR (2018) Variation in animal performance explained by the rumen microbiome or by diet composition. J Anim Sci 96(11):4658–4673

    Article  Google Scholar 

  • Gourama H, Bullerman LB (1995) Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A Review. J Food Prot 58(12):1395–1404. https://doi.org/10.4315/0362-028X-58.12.1395

    Article  CAS  PubMed  Google Scholar 

  • Gradel CM, Dehority BA (1972) Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria. J Appl Microbiol 23(2):332–340

    Article  CAS  Google Scholar 

  • Halik GD, Lozicki A, Koziorzebska A, Dymnicka M, Arkuszewska E (2014) Effect of ensiling pumpkin Cucurbita maxima with the addition of inoculant or without it on chemical composition and quality of silages. Ann Warsaw Univ Life Sci Anim Sci 53:103–110

    Google Scholar 

  • Halik G, Lozicki A, Wilczak J, Arkuszewska E, Makarski M (2018) Pumpkin (Cucurbita maxima D.) silage as a feed that improves nutritional properties of cow’s milk. J Agric Sci Technol 20(7):1383–1394

    Google Scholar 

  • Henderson G, Cox F, Kittelmann S, Miri VH, Zethof M, Noel SJ, Waghorn GC, Janssen PH (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8:e74787. https://doi.org/10.1371/journal.pone.0074787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holman DB, Gzyl KE (2019) A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol Ecol 95(6):fiz072. https://doi.org/10.1093/femsec/fiz072

    Article  CAS  PubMed  Google Scholar 

  • Hooker K, Forwood DL, Caro E, Huo Y, Holman DB, Chaves AV, Meale SJ (2019) Microbial characterization and fermentative characteristics of crop maize ensiled with unsalable vegetables. Sci Rep 9(1):13183. https://doi.org/10.1038/s41598-019-49608-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon BS, Kim S, Sang B-I (2017) Megasphaera hexanoica sp. nov., a medium-chain carboxylic acid-producing bacterium isolated from a cow rumen. Int J Syst Evol 67(7):2114–2120. https://doi.org/10.1099/ijsem.0.001888

    Article  CAS  Google Scholar 

  • Klevenhusen F, Petri RM, Kleefisch MT, Khiaosa-Ard R, Metzler-Zebeli BU, Zebeli Q (2017) Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality and concentrate amount. FEMS Microbiol Ecol 93(9):fix100

    Google Scholar 

  • Kudo H, Cheng KJ, Costerton JW (1987) Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can J Microbiol 33(3):244–248. https://doi.org/10.1139/m87-041

    Article  CAS  PubMed  Google Scholar 

  • Lalnunthari C, Devi LM, Badwaik LS (2020) Extraction of protein and pectin from pumpkin industry by-products and their utilization for develo** edible film. J Food Sci Technol 57(5):1807–1816. https://doi.org/10.1007/s13197-019-04214-6

    Article  CAS  PubMed  Google Scholar 

  • Leng R (2011) The rumen–a fermentation vat or a series of organized structured microbial consortia: implications for the mitigation of enteric methane production by feed additives. Livest Res Rural 23:258

    Google Scholar 

  • Liu J, Wang J-K, Zhu W, Pu Y-Y, Guan L-L, Liu J-X (2014) Monitoring the rumen pectinolytic bacteria Treponema saccharophilum using real-time PCR. FEMS Microbiol Ecol 87(3):576–585. https://doi.org/10.1111/1574-6941.12246

    Article  CAS  PubMed  Google Scholar 

  • Łozicki A, Koziorzębska A, Halik G, Dymnicka M, Arkuszewska E, Niemiec T, Bogdan J (2015) Effect of ensiling pumpkin (Cucurbita maxima D.) with dried sugar beet pulp on the content of bioactive compounds in silage and its antioxidant potential. Anim Feed Sci Technol 206:108–113. https://doi.org/10.1016/j.anifeedsci.2015.05.012

    Article  CAS  Google Scholar 

  • Marounek M, Fliegrova K, Bartos S (1989) Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl Environ Microbiol 55(6):1570–1573. https://doi.org/10.1128/AEM.55.6.1570-1573.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister TA, Bae HD, Jones GA, Cheng KJ (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72(11):3004–3018. https://doi.org/10.2527/1994.72113004x

    Article  CAS  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    Article  CAS  Google Scholar 

  • Megias MD, Hernández F, Madrid J, Martínez-Teruel A (2002) Feeding value, in vitro digestibility and in vitro gas production of different by-products for ruminant nutrition. J Sci Food Agric 82(5):567–572

    Article  CAS  Google Scholar 

  • Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, Petrusan J, Van Droogenbroeck B, Elst K, Sforza S (2016) Pectin content and composition from different food waste streams. Food Chem 201:37–45

    Article  Google Scholar 

  • National Research Council (1982) United States-Canadian tables of feed composition. The National Academic Press, Washington, DC. https://doi.org/10.17226/1713

    Book  Google Scholar 

  • Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259–D264

    Article  CAS  Google Scholar 

  • Oliveira LAD, Jean-Blain C, Durix A, Komisarczuk-Bony S, Durier C (1996) Use of a semi-continuous culture system (RUSITEC) to study the effect of pH on microbial metabolism of thiamin (vitamin B1). Arch Tierernahr 49(3):193–202. https://doi.org/10.1080/17450399609381880

    Article  Google Scholar 

  • Paynter MJB, Elsden SR (1970) Mechanism of propionate formation by Selenomonas ruminantium, a rumen micro-organism. J Gen Microbiol 61(1):1–7. https://doi.org/10.1099/00221287-61-1-1

    Article  CAS  PubMed  Google Scholar 

  • Petri RM, Forster RJ, Yang W, McKinnon JJ, McAllister TA (2012) Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. J Appl Microbiol 112(6):1152–1162

    Article  CAS  Google Scholar 

  • Pitta DW, Pinchak WE, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, Fulford JD, Wickersham TA, Malinowski DP (2010) Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 59(3):511–522. https://doi.org/10.1007/s00248-009-9609-6

    Article  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  Google Scholar 

  • Ramos, AF, Terry, SA, Holman, DB, Breves, G, Pereira, LG, Silva, AG and Chaves, AV (2018) Tucumã oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay–concentrate diet. Front Microbiol 9:1647. https://doi.org/10.3389/fmicb.2018.01647

  • Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V (2016) Identification, characterization, and expression analysis of cell wall related genes in Sorghum bicolor (L.) Moench, a food, fodder, and biofuel crop. Front Plant Sci 7(1287). https://doi.org/10.3389/fpls.2016.01287

  • Razzaghzadeh S, Amini-Jabalkandi J, Hashemi A (2007) Effects of different levels of pumpkin (Cucurbita pepo) residue silage replacement with forage part of ration on male buffalo calves fattening performance. Ital J Anim Sci 6(2):575–577. https://doi.org/10.4081/ijas.2007.s2.575

    Article  Google Scholar 

  • Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Environ Microbiol 39(3):604–610

    Article  CAS  Google Scholar 

  • Sawanon S, Koike S, Kobayashi Y (2011) Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion. FEMS Microbiol Lett 325(2):170–179. https://doi.org/10.1111/j.1574-6968.2011.02427.x

    Article  CAS  PubMed  Google Scholar 

  • Snelling TJ, Auffret MD, Duthie CA, Stewart RD, Watson M, Dewhurst RJ, Roehe R, Walker AW (2019) Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Anim Microb 1:16

    Article  Google Scholar 

  • Stanton TB, Canale-Parola E (1980) Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol 127(2):145–156. https://doi.org/10.1007/bf00428018

    Article  CAS  PubMed  Google Scholar 

  • Teoh R, Caro E, Holman DB, Joseph S, Meale SJ, Chaves AV (2019) Effects of hardwood biochar on methane production, fermentation characteristics, and the rumen microbiota using rumen simulation. Front Microb 10:1534. https://doi.org/10.3389/fmicb.2019.01534

    Article  Google Scholar 

  • Terry S, Ramos A, Holman D, McAllister T, Breves G, Chaves A (2018) Humic substances alter ammonia production and the microbial populations within a RUSITEC fed a mixed hay - concentrate diet. J Anim Sci 96(s3):63–63

    Article  Google Scholar 

  • Tunde-Akintunde TY, Ogunlakin GO (2011) Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin. Energy Convers Manag 52(2):1107–1113. https://doi.org/10.1016/j.enconman.2010.09.005

    Article  Google Scholar 

  • Wang L, Zhang G, Li Y, Zhang Y (2020) Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 10(2):223. https://doi.org/10.3390/ani10020223

    Article  Google Scholar 

  • Whitman, WB (2010) Bergey's Manual of Systematic Bacteriology, Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Springer-Verlag, New York

  • Williams AG, Strachan NH (1984) The distribution of polysaccharide-degrading enzymes in the bovine rumen digesta ecosystem. Curr Microbiol 10(4):215–220. https://doi.org/10.1007/bf01627258

    Article  CAS  Google Scholar 

  • Windham WR, Akin DE (1984) Rumen fungi and forage fiber degradation. Appl Environ Microbiol 48(3):473–476

    Article  CAS  Google Scholar 

  • **n J, Chai Z, Zhang C, Zhang Q, Zhu Y, Cao H, Zhong J, Ji Q (2019) Comparing the microbial community in four stomach of dairy cattle, yellow cattle and three yak herds in Qinghai-Tibetan Plateau. Front Microbiol 10:1547–1547. https://doi.org/10.3389/fmicb.2019.01547

    Article  PubMed  PubMed Central  Google Scholar 

  • Yohe TT, Enger BD, Wang L, Tucker HLM, Ceh CA, Parsons CLM, Yu Z, Daniels KM (2018) Short communication: Does early-life administration of a Megasphaera elsdenii probiotic affect long-term establishment of the organism in the rumen and alter rumen metabolism in the dairy calf? J Dairy Sci 101(2):1747–1751. https://doi.org/10.3168/jds.2017-12551

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36:808–812. https://doi.org/10.2144/04365st04

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L, Caro, E, Holman, DB, Gzyl, KE, Moate, PJ and Chaves, AV (2020) Ozone decreased enteric methane production by 20% in an in vitro rumen fermentation system. Front Microbiol 11:571537. https://doi.org/10.3389/fmicb.2020.571537

  • Ziołecki A (1979) Isolation and characterization of large treponemes from the bovine rumen. Appl Environ Microbiol 37(1):131–135

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Meat & Livestock Australia for their financial support of Daniel Forwood. The authors would also like to thank Kalfresh Pty Ltd. for supplying the pumpkins utilised in this study.

Author information

Authors and Affiliations

Authors

Contributions

AVC and SJM conceived and designed research. AVC, DLF, EC and SJM conducted experiments. DBH conducted bioinformatics. AVC, DBH, DLF and SJM analysed the data. AVC and DBH conducted statistical analyses. DLF, AVC, SJM and DBH wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Alex V. Chaves.

Ethics declarations

Ethics approval

Experimental work with donor cattle was conducted at The University of Sydney Corstorphine Dairy (Cobbitty, NSW Australia) in accordance with The University of Sydney Animal Ethics Committee (Approved Protocol number 2015/835).

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forwood, D.L., Caro, E., Holman, D.B. et al. Ensiling sorghum with unsalable pumpkin improves feed digestibility with minimal influence on the rumen microbial population using the rumen simulation technique. Appl Microbiol Biotechnol 105, 3289–3300 (2021). https://doi.org/10.1007/s00253-021-11220-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11220-2

Keywords

Navigation